In this study discusses the application of fuzzy logic in solving production problems using the Tsukamoto method and the Sugeno method. The problem that is solved is how to determine the production of woven fabric when using three variables as input data, namely: stock, demand and inventory of production costs. The first step is to solve the problem of woven fabric production using the Tsukamoto method which is to determine the input variables and output variables which are firm sets, the second step is to change the input variable into a fuzzy set with the fuzzification process, then the third step is processing the fuzzy set data with the maximum method. And the last or fourth step is to change the output into a firm set with the defuzzification process with a weighted average method, so that the desired results will be obtained in the output variable. The solution to the production problem using the Sugeno method is almost the same as using the Tsukamoto method, it's just that the system output is not a fuzzy set, but rather a constant or a linear equation. The difference between the Tsukamoto Method and the Sugeno Method is in consequence. The Sugeno method uses constants or mathematical functions of the input variables.
This study explains the implementation using the Weighted Aggregated Sum Product Assessment method in determining the best rice to be used for making Serabi cakes, the case was taken from a Serabi cake seller in Tegal City, Central Java with the aim of providing knowledge to Serabi cake traders to be more detailed in determining the rice that is used. suitable for use in making Serabi not just rice is cheap, but it is necessary to see the shape and characteristics of the whole rice. The steps taken to determine the best rice which will then be used as the basis for making Serabi cakes using the Weighted Aggregated Sum Product Assessment method are: (1) Prepare a matrix in which is the value of each set of criteria, (2) Normalize matrix data x becomes normalized data, (3) Calculates alternative values using Weighted Aggregated Sum Product Assessment formula so that the ranking value is found. After these steps are carried out, in this study the best rice that is right to be used as a material for making Serabi is Pelita rice with a yield of 7.12 by occupying the first rank.
<p>Penelitian ini menerangkan penerapan <em>decision tree</em> J48 dan REPTree dengan menggunakan metode <em>fuzzy Tsukamoto</em> dengan objek yang digunakan adalah penentuan jumlah produksi minyak kelapa sawit di perusahaan PT Tapiana Nadenggan dengan tujuan untuk mengetahui <em>decision tree</em> mana yang hasilnya mendekati dari data sesungguhnya sehingga dapat digunakan untuk membantu memprediksi jumlah produksi minyak kelapa sawit di PT Tapiana Nadenggan ketika proses produksi belum diproses. Digunakannya <em>decision tree</em> J48 dan REPTree yaitu untuk mempercepat dalam pembuatan <em>rule </em>yang digunakan tanpa harus berkonsultasi dengan para pakar dalam menentukan <em>rule</em> yang digunakan. Dari data yang digunakan akurasi dari decision tree J48 adalah 95.2381%, sedangkan akurasi REPTree adalah 90.4762%, akan tetapi dalam kasus ini <em>decision tree</em> REPTree yang lebih tepat digunakan dalam proses prediksi produksi minyak kelapa sawit, karena di uji dengan data sesungguhnya pada bulan Maret tahun 2019 menggunakan REPTree diperoleh 16355835 liter, sedangkan menggunakan J48 diperoleh 11844763 liter, dimana data produksi sesungguhnya sebesar 17920000 liter. Sehingga dapat ditemukan suatu kesimpulan bahwa untuk kasus ini data produksi yang mendekati dengan data sesungguhnya adalah REPTree, meskipun akurasi yang diperoleh lebih kecil dibandingkan dengan J48.</p><p><em><strong>Abstract</strong></em></p><div><p><em>This study explains the application of the J48 and REPTree decision tree using the fuzzy Tsukamoto method with the object used is the determination of the amount of palm oil production in the company PT Tapiana Nadenggan with the aim of knowing which decision tree the results are close to the actual data so that it can be used to help predict the amount palm oil production at PT Tapiana Nadenggan when the production process has not been processed. The use of the J48 and REPTree decision tree is to speed up the rule making that is used without having to consult with experts in determining the rules used. From the data used the accuracy of the J48 decision tree is 95.2381%, while the REPTree accuracy is 90.4762%, but in this case the REPTree decision tree is more appropriate to be used in the prediction process of palm oil production, because it is tested with actual data in March 2019 uses REPTree obtained 16355835 liters, while using J48 obtained 11844763 liters, where the actual production data is 179,20000 liters. So that it can be found a conclusion that for this case the production data approaching the actual data is REPTree, even though the accuracy obtained is smaller compared to J48.</em></p></div><p><em><strong><br /></strong></em></p>
<p>Penelitian ini menerangkan penerapan metode <em>Weighted Aggregated Sum Product Assesment</em> dalam menentukan beras terbaik yang akan digunakan untuk pembuatan kue serabi, kasus diambil dari pedagang kue serabi di Kota Tegal Jawa Tengah dengan tujuan memberikan pengetahuan kepada para pedagang kue serabi agar lebih detail dalam menentukan beras yang layak untuk digunakan dalam pembuatan kue serabi bukan hanya sekedar beras tersebut murah, akan tetapi perluh dilihat bentuk dan ciri keseluruhan beras. Langkah-langkah yang dilakukan untuk menentukan beras terbaik yang kemudian akan digunakan sebagai bahan dasar pembuatan kue serabi dengan menggunakan metode <em>Weighted Aggregated Sum Product Assesment </em>yaitu: (1) Mempersiapkan sebuah matriks yang didalamnya merupakan nilai dari masing masing himpunan dari kriteria, (2) Menormalisasikan data matriks x menjadi data ternormalisasi, (3) Menghitung nilai alternatif dengan menggunakan rumus <em>Weighted Aggregated Sum Product Assesment</em> sehingga ditemukan nilai perangkingan. Setelah langkah-langkah tersebut dilakukan, dalam penelitian ini beras terbaik yang tepat untuk digunakan sebagai bahan pembuatan kue serabi adalah beras pelita dengan hasil 7,12 dengan menduduki <em>rangking</em> pertama.</p><p> </p><p><em><strong>Abstract</strong></em></p><div><p><em>This study explains the application of the Weighted Aggregated Sum Product Assessment method in determining the best rice to be used for making pancake cakes. The steps taken to determine the best rice using the Weighted Aggregated Sum Product Assessment method are: (1) Prepare all rice data to be calculated, (2) Make rice data in the form of matrix x and normalize the data matrix x into normalized data, ( 3) Calculate the alternative value for the best rice by using the formula Weighted Aggregated Sum Product Assessment so that the ranking value is found. After these steps are carried out, the best rice that is right to be used as a pancake cake ingredient is pelita rice with a yield of 7.12 by occupying the first rank. Proving the results of the Weighted Aggregated Sum Product Assessment method, a questionnaire was conducted directly to pancake cake traders, especially those in Tegal, which produced a percentage of 80% from 100, which said that pelita rice was rice worthy of being used as a material for pancake cakes because the pancake produced is more fragrant and fresher and the price is relatively cheap.</em></p></div>
<p>Kain tenun merupakan salah satu produk yang diminati oleh banyak orang. Hal ini menjadi pemicu produsen untuk meningkatkan pengelolahannya. Salah satu usaha yang dilakukan adalah memprediksi produksi yang dapat dilakukan untuk mendapatkan jumlah optimal yang diperoleh, sehingga mendapatkan keuntungan yang besar. Dalam penelitian ini, untuk mendapatkan prediksi jumlah produksi kain tenun dilakukan dengan perhitungan komputerisasi menggunakan metode logika <em>fuzzy </em>Mamdani. Metode ini menggunakan konsep pohon keputusan <em>random tree </em>dalam membentuk <em>rule.</em> <em>Rule </em>yang dibuat berdasarkan pada kriteria dalam penentuan jumlah produksi kain tenun, diantaranya yaitu biaya produksi, permintaan, dan stok.<em> </em>Konsep<em> </em>pohon keputusan <em>random tree</em> dalam penelitian ini digunakan untuk membuat <em>rule</em> secara otomatis berdasarkan data yang tersedia. Pembentukan <em>rule</em> ini berdasarkan data-data kain tenun dan diimplementasikan dalam <em>random tree</em>, sehingga tidak perlu menggunakan pakar. Penelitian ini membuktikan bahwa prediksi yang dilakukan dapat membangun <em>rule</em> dengan nilai akurasi sebesar 100%. Hasil perbandingan prediksi dengan produksi sesungguhnya memiliki persentase <em>error</em> sebesar 3% dengan nilai kebenaran sebesar 97% (berdasarkan perhitungan <em>Average Forecasting Error Rate </em>(AFER))<strong>.</strong> Oleh karena itu ketika diimplementasikan dalam <em>fuz</em><em>z</em><em>y</em> Mamdani dapat menghasilkan prediksi produksi kain tenun yang optimal.</p><p> </p><p><em><strong>Abstract</strong></em></p><p><em>Woven fabric is a product that is in demand by many people. It triggers producers to improve their management. One of the efforts made is to predict the production that can be done to get the optimal amount obtained, to get a significant profit. In this study, to obtain a prediction of the amount of woven fabric production is done by computerized calculations using the Mamdani fuzzy logic method. This method uses the concept of a random tree decision tree in forming rules. The rules are made based on the criteria in determining the amount of woven fabric production, including production costs, demand, and stock. The concept of a random tree decision tree in this study automatically generates rules based on available data. This rule's formation is based on woven fabric data and is implemented in a random tree, so there is no need to use experts. This study shows that the predictions made can build rules with an accuracy value of 100%. The comparison of predictions with actual production has an error percentage of 3% with a truth value of 97% (based on the calculation of the Average Forecasting Error Rate (AFER)). When implemented in Fuzzy Mamdani, it can produce optimal woven fabric production predictions with predicted results less than the actual production.</em></p><p><em><strong><br /></strong></em></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.