Coelectrolysis of CO2 with simple nitrogen
compounds
can generate molecules containing C–N bonds, which makes it
an appealing method for increasing the value and scope of products
obtained from CO2 electrochemical reduction (CO2ER) alone. In this study, we used density functional theory (DFT)
calculations combined with a constant electrode potential model to
investigate C–N formation pathways in the coreduction of CO2 and NO3
–/NO2
– to produce urea on Cu(111). Strikingly, we found that
the first C–N bond is formed through coupling of gaseous CO2, rather than an intermediate of CO2ER, with the
surface-bound N1 intermediates (i.e., *NO2,
*NOH, *N, *NH, and *NH2) generated during NO3
–/NO2
– reduction to
NH3. The reaction follows the Eley–Rideal mechanism
and requires only a single active site. This result is in contrast
with the literature, where the carbon species for C–N coupling
were assumed to be intermediates from CO2ER to CO (i.e.,
*COOH and *CO). Further barrier decomposition analysis indicated that
the facile kinetics of C–N coupling involving CO2 are due to the lower energy cost to deform CO2 and the
N1 intermediate to the transition-state structure as well
as the attractive interaction between them. For these facile and hence
important CO2 + N1 reactions, we determined
that the kinetic barrier of C–N coupling correlates well with
the deformation energy of the N1 intermediate. Based on
these insights, two strategies to improve C–N coupling have
been proposed.
Gold-catalyzed reactions of cycloheptatrienes with nitrosoarenes yield nitrone derivatives efficiently. This reaction sequence enables us to develop gold-catalyzed aerobic oxidations of cycloheptatrienes to afford benzaldehyde derivatives using CuCl and nitrosoarenes as co-catalysts (10−30 mol %). Our density functional theory calculations support a novel nitroso-activated rearrangement, tropylium → benzylidene. With the same nitrosoarenes, we developed their gold-catalyzed [2 + 2 + 1]annulations between nitrosobenzene and two enol ethers to yield 5-alkoxyisoxazolidines using 1,4-cyclohexadienes as hydrogen donors.
A one-pot construction of bicyclo[3.2.1]oct-6-ene frameworks involves gold-catalyzed (4 + 3)-cycloadditions between 2-(1-alkynyl)-2-alken-1-ones and substituted cyclopentadienes; diastereoselectivity (dr >25:1) and enantioselectivity (up to 99.9% ee) are achieved with a chiral gold catalyst. Our DFT calculations suggest a three-step ionic mechanism for the cycloadditions of gold-containing 1,3-dipoles with cyclopentadienes, in which an exo-spatial arrangement is preferable.
Electrochemical
partial oxidation of hydrocarbons to value-added
products using electricity from renewable energy resources has the
potential to change the way that commodity chemicals are manufactured.
In this study, we used density functional theory calculations combined
with a constant electrode potential model to study the previously
reported ethylene partial electro-oxidation to epoxide on RuO2(110) in an aqueous solution containing [Cl–] = 0.3 M. We found that the high selectivity toward epoxide is due
to the in situ generated *OCClO* intermediate that blocks parts of
the surface and leads to isolation of *O (surface adsorbed oxygen)
active sites. This step turns off the pathways to over-oxidation and
drives the reaction toward epoxide formation. The reaction mechanisms
for ethylene over-oxidation and partial oxidation are proposed. Our
theoretical study unveiled a dynamic and unique means to achieve active
site isolation that can be used to improve selectivity of hydrocarbon
partial electro-oxidation.
A series of diindeno[2,1-b:2′,1′-h]biphenylenes with
open-shell singlet ground states and
interesting properties were prepared. The studied compounds consist
of p-quinodimethane moieties, which suffer from geometric
perturbation with bond angles of around 90°. The substituent
effects on structural parameters, local aromaticity, and properties
were systematically explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.