Beaklike SnO2 nanorods were synthesized by a vapor-liquid-solid approach using Au as a catalyst. The nanorods grow along the [10 1] direction and the beak is formed by switching the growth direction to [1 12] through controlling the growth conditions at the end of the synthesis. The photoluminescence (PL) spectrum of the nanorods exhibits visible light emission with a peak at 602 nm. The field-emission (FE) properties of the nanorods have been measured to exhibit a turn-on field of 5.8 V microm(-1). A comparative study of FE measurements between SnO2 nanorods with uniform diameters and these beaklike nanorods suggests that the shape and curved tips are important factors in determining the FE properties.
In positron emission tomographic (PET) scanning, transmission measurements for attenuation correction are commonly performed by using external germanium-68 rod sources. Recently, combined PET and computed tomographic (CT) scanners have been developed in which the CT data can be used for both anatomical-metabolic image formation and attenuation correction of the PET data. The purpose of this study was to evaluate the difference between germanium- and CT-based transmission scanning in terms of their radiation doses by using the same measurement technique and to compare the doses that patients receive during brain, cardiac and whole-body scans. Measurement of absorbed doses to organs was conducted by using a Rando Alderson phantom with thermoluminescent dosimeters. Effective doses were calculated according to the guidelines in the International Commission on Radiation Protection Publication Number 60. Compared with radionuclide doses used in routine 2-[fluorine-18]-fluoro-2-deoxy-D-glucose PET imaging, doses absorbed during germanium-based transmission scans were almost negligible. On the other hand, absorbed doses from CT-based transmission scans were significantly higher, particularly with a whole-body scanning protocol. Effective doses were 8.81 mSv in the high-speed mode and 18.97 mSv in the high-quality mode for whole-body CT-based transmission scans. These measurements revealed that the doses received by a patient during CT-based transmission scanning are more than those received in a typical PET examination. Therefore, the radiation doses represent a limitation to the generalised use of CT-based transmission measurements with current PET/CT scanner systems.
BackgroundCentral obesity in relation to insulin resistance is strongly linked to the development of type 2 diabetes. However, data regarding the association between pericardial and peri-aortic adiposity, a potential estimate of visceral adipose tissue burden, and pre-diabetes status remains unclear.The aim of this study was to examine whether the degree of pericardial and thoracic peri-aortic adipose tissue, when quantified by multi-detector computed tomography (MDCT), differs significantly in a normal, pre-diabetic, and overtly diabetic population.MethodsWe studied 562 consecutive subjects including 357 healthy, 155 pre-diabetic, and 50 diabetic patients selected from participants who underwent annual health surveys in Taiwan. Pre-diabetes status was defined by impaired fasting glucose or impaired glucose intolerance according to American Diabetes Association guidelines. Pericardial (PCF) and thoracic peri-aortic (TAT) adipose tissue burden was assessed using a non-contrast 16-slice multi-detector computed tomography (MDCT) dataset with off-line measurement (Aquarius 3D Workstation, TeraRecon, San Mateo, CA, USA). Body fat composition, serum high-sensitivity C-reactive protein (hs-CRP) level and insulin resistance (HOMA-IR) were also assessed.ResultsPatients with diabetes and pre-diabetes had greater volume of PCF (89 ± 24.6, 85.3 ± 28.7 & 67.6 ± 26.7 ml, p < 0.001) as well as larger TAT (9.6 ± 3.1 ml vs 8.8 ± 4.2 & 6.6 ± 3.5 ml, respectively, p < 0.001) when compared to the normal group, although there were no significant differences in adiposity between the diabetic and pre-diabetic groups. For those without established diabetes in our study, increasing TAT burden, but not PCF, appear to correlate with insulin resistance (HOMA-IR) and hs-CRP in the multivariable models.ConclusionsPre-diabetic and diabetic subjects, compared to normoglycemia, were associated with significantly higher pericardial and peri-aortic adipose tissue burden. In addition, visceral fat accumulation adjacent to the thoracic aorta seemed to exert a significant impact on insulin resistance and systemic inflammation.
In conclusion, after intensive training and practice, the neural pathways in an abacus expert have been connected more effectively for performing the number encoding and retrieval that are required in abacus tasks, resulting in exceptional mental computational ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.