<span>The critical activity of testing is the systematic selection of suitable test cases, which be able to reveal highly the faults. Therefore, mutation coverage is an effective criterion for generating test data. Since the test data generation process is very labor intensive, time-consuming and error-prone when done manually, the automation of this process is highly aspired. The researches about automatic test data generation contributed a set of tools, approaches, development and empirical results. In this paper, we will analyse and conduct a comprehensive survey on generating test data based on mutation. The paper also analyses the trends in this field.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.