A majority of potential radioprotective synthetic compounds have demonstrated limited clinical application owing to their inherent toxicity, and thus, the seeking of naturally occurring herbal products, such as ginseng, for their radioprotective capability has become an attractive alternative. In general, ginseng refers to the roots of the species of the genus Panax. As a medicinal herb, ginseng has been widely used in traditional Chinese medicine for its wide spectrum of medicinal effects, such as tonic, immunomodulatory, antimutagenic, adaptogenic and antiaging activities. Many of its medicinal effects are attributed to the triterpene glycosides known as ginsenosides (saponins). This review addresses the issue of the radioprotective effects of ginseng on mammalian cells both in vitro and in vivo. Results indicate that the water-soluble extract of whole ginseng appears to give a better protection against radiation-induced DNA damage than does the isolated ginsenoside fractions. Since free radicals play an important role in radiation-induced damage, the underlying radioprotective mechanism of ginseng could be linked, either directly or indirectly, to its antioxidative capability by the scavenging free radicals responsible for DNA damage. In addition, ginseng's radioprotective potential may also be related to its immunomodulating capabilities. Ginseng is a natural product with worldwide distribution, and in addition to its antitumor properties, ginseng appears to be a promising radioprotector for therapeutic or preventive protocols capable of attenuating the deleterious effects of radiation on human normal tissue, especially for cancer patients undergoing radiotherapy.
Micronucleus (MN) expression in peripheral blood lymphocytes is well established as a standard method for monitoring chromosome damage in human populations. The first results of an analysis of pooled data from laboratories using the cytokinesis-block micronucleus (CBMN) assay and participating in the HUMN (HUman MicroNucleus project) international collaborative study are presented. The effects of laboratory protocol, scoring criteria, and host factors on baseline micronucleated binucleate cell (MNC) frequency are evaluated, and a reference range of "normal" values against which future studies may be compared is provided. Primary data from historical records were submitted by 25 laboratories distributed in 16 countries. This resulted in a database of nearly 7000 subjects. Potentially significant differences were present in the methods used by participating laboratories, such as in the type of culture medium, the concentration of cytochalasin-B, the percentage of fetal calf serum, and in the culture method. Differences in criteria for scoring micronuclei were also evident. The overall median MNC frequency in nonexposed (i.e., normal) subjects was 6.5 per thousand and the interquartile range was between 3 and 12 per thousand. An increase in MNC frequency with age was evident in all but two laboratories. The effect of gender, although not so evident in all databases, was also present, with females having a 19% higher level of MNC frequency (95% confidence interval: 14-24%). Statistical analyses were performed using random-effects models for correlated data. Our best model, which included exposure to genotoxic factors, host factors, methods, and scoring criteria, explained 75% of the total variance, with the largest contribution attributable to laboratory methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.