Biobased carbon materials (BBC) obtained from Norway spruce (Picea abies Karst.) bark was produced by single-step chemical activation with ZnCl2 or KOH, and pyrolysis at 800 °C for one hour. The chemical activation reagent had a significant impact on the properties of the BBCs. KOH-biobased carbon material (KOH-BBC) had a higher specific surface area (SBET), equal to 1067 m2 g−1, larger pore volume (0.558 cm3 g−1), more mesopores, and a more hydrophilic surface than ZnCl2-BBC. However, the carbon yield for KOH-BBC was 63% lower than for ZnCl2-BBC. Batch adsorption experiments were performed to evaluate the ability of the two BBCs to remove two dyes, reactive orange 16 (RO-16) and reactive blue 4 (RB-4), and treat synthetic effluents. The general order model was most suitable for modeling the adsorption kinetics of both dyes and BBCs. The equilibrium parameters at 22 °C were calculated using the Liu model. Upon adsorption of RO-16, Qmax was 90.1 mg g−1 for ZnCl2-BBC and 354.8 mg g−1 for KOH-BBC. With RB-4, Qmax was 332.9 mg g−1 for ZnCl2-BBC and 582.5 mg g−1 for KOH-BBC. Based on characterization and experimental data, it was suggested that electrostatic interactions and hydrogen bonds between BBCs and RO-16 and RB-4 dyes played the most crucial role in the adsorption process. The biobased carbon materials showed high efficiency for removing RO-16 and RB-4, comparable to the best examples from the literature. Additionally, both the KOH- and ZnCl2-BBC showed a high ability to purify two synthetic effluents, but the KOH-BBC was superior.
In this work, Norway spruce (Picea abies (Karst) L.) bark was employed as a precursor to prepare activated carbon using zinc chloride (ZnCl2) as a chemical activator. The purpose of this study was to determine optimal activated carbon (AC) preparation variables by the response surface methodology using a Box–Behnken design (BBD) to obtain AC with high specific surface area (SBET), mesopore surface area (SMESO), and micropore surface area (SMICR). Variables and levels used in the design were pyrolysis temperature (700, 800, and 900 °C), holding time (1, 2, and 3 h), and bark/ZnCl2 impregnation ratio (1, 1.5, and 2). The optimal conditions for achieving the highest SBET were as follows: a pyrolysis temperature of 700 °C, a holding time of 1 h, and a spruce bark/ZnCl2 ratio of 1.5, which yielded an SBET value of 1374 m2 g−1. For maximised mesopore area, the optimal condition was at a pyrolysis temperature of 700 °C, a holding time of 2 h, and a bark/ZnCl2 ratio of 2, which yielded a SMESO area of 1311 m2 g−1, where mesopores (SMESO%) comprised 97.4% of total SBET. Correspondingly, for micropore formation, the highest micropore area was found at a pyrolysis temperature of 800 °C, a holding time of 3 h, and a bark/ZnCl2 ratio of 2, corresponding to 1117 m2 g−1, with 94.3% of the total SBET consisting of micropores (SMICRO%). The bark/ZnCl2 ratio and pyrolysis temperature had the strongest impact on the SBET, while the interaction between temperature and bark/ZnCl2 ratio was the most significant factor for SMESO. For the SMICRO, holding time was the most important factor. In general, the spruce bark AC showed predominantly mesoporous structures. All activated carbons had high carbon and low ash contents. Chemical characterisation indicated that the ACs presented disordered carbon structures with oxygen functional groups on the ACs’ surfaces. Well-developed porosity and a large surface area combined with favourable chemical composition render the activated carbons from Norway spruce bark with interesting physicochemical properties. The ACs were successfully tested to adsorb sodium diclofenac from aqueous solutions showing to be attractive products to use as adsorbents to tackle polluted waters. Graphical abstract
In this work the activity of ruthenium decorated carbon foam (Ru/CF) catalyst was studied in three phase hydrogenation reaction of D-xylose to D-xylitol. The developed catalyst was characterized by using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectrometry and nitrogen adsorption-desorption measurement. Kinetic measurements were carried out in a laboratory scale pressurized reactor (Parr Ò ) assisted by SpinChem Ò rotating bed reactor (SRBR), at pre-defined conditions (40-60 bar H 2 and 100-120°C). The study on the influence of reaction conditions showed that the conversion rate and selectivity of hydrogenation reaction of Dxylose was significantly affected by temperature. These results have been proved by a competitive kinetics model which was found to describe the behavior of the novel system (Ru/CF catalyst used together with the SRBR) very well. Besides, it was revealed that the catalytic activity as well as the stability of our Ru/CF-SRBR is comparable with the commercial ruthenium decorated carbon catalyst (Ru/ AC) under identical reaction conditions. Moreover, all steps from catalyst preparation and catalyst recycling as well as catalytic testing can be performed in an easy, fast and elegant manner without any loss of materials. Briefly, the developed Ru/CF catalyst used together with the SRBR could be used an excellent alternative for the conventional Raney nickel catalyst in a slurry batch reactor and offers an attractive concept with obvious industrial applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.