We present CoverNet, a new method for multimodal, probabilistic trajectory prediction in urban driving scenarios. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead frame the trajectory prediction problem as classification over a diverse set of trajectories. The size of this set remains manageable, due to the fact that there are a limited number of distinct actions that can be taken over a reasonable prediction horizon. We structure the trajectory set to a) ensure a desired level of coverage of the state space, and b) eliminate physically impossible trajectories. By dynamically generating trajectory sets based on the agent's current state, we can further improve the efficiency of our method. We demonstrate our approach on public, real-world self-driving datasets, and show that it outperforms state-of-the-art methods.
Rules or specifications for autonomous vehicles are currently formulated on a case-by-case basis, and put together in a rather ad-hoc fashion. As a step towards eliminating this practice, we propose a systematic procedure for generating a set of supervisory specifications for self-driving cars that are 1) associated with a distributed assume-guarantee structure and 2) characterizable by the notion of consistency and completeness. Besides helping autonomous vehicles make better decisions on the road, the assume-guarantee contract structure also helps address the notion of blame when undesirable events occur. We give several game-theoretic examples to demonstrate applicability of our framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.