The volume and complexity of publicly available real estate data have been snowballing. As a result, information extraction and processing have become increasingly challenging and essential for many PropTech (Property Technology) companies worldwide. The challenges are even more pronounced with languages other than English, such as Vietnamese, where few studies in this field have taken place. This paper presents an end-to-end framework for automatically collecting real estate advertisement posts from different data sources, extracting useful information, and storing computed data into proper data warehouses and data marts for the Vietnamese advertisement posts in real estate. After that, one can serve aggregated data for other descriptive and predictive analytics. We combine two models for constructing the most appropriate extraction step: Noise Filtering and Named Entity Recognition (NER). These models can help process initial input data and extract all helpful information. The experiment results show that using PhoBERT large can achieve the best performance compared to other approaches. Furthermore, we can obtain the corresponding F1 scores of the Noise filtering module and the NER module as 0.8697 and 0.8996, respectively. Finally, we utilize Superset for implementing analytic dashboards to visualize the predicted results and serve for further analysis and management processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.