Computational modelling has become increasingly common in life science research. To provide a platform to support universal sharing, easy accessibility and model reproducibility, BioModels (https://www.ebi.ac.uk/biomodels/), a repository for mathematical models, was established in 2005. The current BioModels platform allows submission of models encoded in diverse modelling formats, including SBML, CellML, PharmML, COMBINE archive, MATLAB, Mathematica, R, Python or C++. The models submitted to BioModels are curated to verify the computational representation of the biological process and the reproducibility of the simulation results in the reference publication. The curation also involves encoding models in standard formats and annotation with controlled vocabularies following MIRIAM (minimal information required in the annotation of biochemical models) guidelines. BioModels now accepts large-scale submission of auto-generated computational models. With gradual growth in content over 15 years, BioModels currently hosts about 2000 models from the published literature. With about 800 curated models, BioModels has become the world’s largest repository of curated models and emerged as the third most used data resource after PubMed and Google Scholar among the scientists who use modelling in their research. Thus, BioModels benefits modellers by providing access to reliable and semantically enriched curated models in standard formats that are easy to share, reproduce and reuse.
Reproducibility of scientific results is a key element of science and credibility. The lack of reproducibility across many scientific fields has emerged as an important concern. In this piece, we assess mathematical model reproducibility and propose a scorecard for improving reproducibility in this field.
BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing.
The reproducibility crisis has emerged as an important concern across many fields of science including life science, since many published results failed to reproduce. Systems biology modelling, which involves mathematical representation of biological processes to study complex system behaviour, was expected to be least affected by this crisis. While lack of reproducibility of experimental results and computational analysis could be a repercussion of several compounded factors, it was not fully understood why systems biology models with well defined mathematical expressions fail to reproduce and how prevalent it is. Hence, we systematically attempted to reproduce 455 kinetic models of biological processes published in peer-reviewed research articles from 152 journals; which is collectively a work of about 1400 scientists from 49 countries. Our investigation revealed that about half (49%) of the models could not be reproduced using the information provided in the published manuscripts. With further effort, an additional 12% of the models could be reproduced either by empirical correction or support from authors. The other 37% remained non-reproducible models due to missing parameter values, missing initial concentration, inconsistent model structure, or a combination of these factors. Among the corresponding authors of the non-reproducible model we contacted, less than 30% responded. Our analysis revealed that models published in journals across several fields of life science failed to reproduce, revealing a common problem in the peer-review process. Hence, we propose an 8-point reproducibility scorecard that can be used by authors, reviewers and journal editors to assess each model and address the reproducibility crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.