In the present paper, micro-grooved Ti3SiC2 surfaces with different roughness were fabricated by pulsed laser processing. The surface topography and chemical composition of smooth and micro-grooved surfaces were characterised. The wetting behaviours of smooth and micro-grooved Ti3SiC2 surfaces such as static contact angle, anisotropic wettability and contact angle evolution versus time were investigated. The experimental results show that micro-grooved structures can be efficiently fabricated on Ti3SiC2 surface by laser processing. The contact angle of micro-grooved surface was increased by 64.2° compared with that of smooth surface. The difference values of contact angles between perpendicular and parallel direction were < 10°. The wetting state of droplet on textured surface was close to Cassie–Baxter model.
Ti3SiC2 is a bioinert material. The combination of high fracture toughness, excellent corrosion resistance and easy machinability make it a new class of potential biomaterials for orthopedic applications, dental implants, and fixation devices for the bone. In this paper, effect of Si concentration on the sintering of Ti3SiC2 bulk material was reported. Ti3SiC2 bulks were fabricated by pressureless reactive sintering of powder compacts made of Ti, Si and graphite powders. Nearly pure Ti3SiC2 bulk was obtained by reactive sintering of the powder compact, with a nominal composition of 3:1.1:2 in molar ratio of Ti:Si:C, at 1500 °C for 120 minutes. TiC, a non-preferable impurity was avoided by the appropriate addition of excess Si (relative to stoichiometric composition of 3:1:2 in Ti3SiC2). However, too much Si will result in the formation of significant amount of TiSi2 and SiC in the sintered Ti3SiC2. Microstructure of the prepared Ti3SiC2 bulks was analyzed by scanning electron microscope. Phase constituent analysis was carried out by x-ray diffraction. Effect of Si content on the density of sintered samples was also studied.
In order to develop high density powder metallurgy forming technology, a new concept combining high velocity compaction and warm compaction called warm high velocity compaction (WHVC) was presented. A new warm high velocity compaction forming equipment which adopts gravitational potential energy instead of hydraulic cylinder as hammer driver was designed. By means of the newly developed equipment, a preliminary study on warm high velocity compaction was performed. 316L stainless powder compacts with green density of 7.47 g/cm3 were obtained; the density is much higher than those prepared by conventional high velocity compaction. These results demonstrate that the newly designed equipment can basically meet the demand of warm high velocity compaction and the new forming method is superior to the conventional high velocity compaction. In addition, Densification mechanism of WHVC was also discussed.
Ti, SiC and their composite materials have been widely used as high temperature structural material. The knowledge of interfacial stability between SiC and Ti is vital in high temperature applications. In this study, SiC/Ti diffusion couples were prepared to investigate the interfacial reactions between SiC and Ti at 1273 K. Phase forming sequence, microstructure and thermal stability of SiC/Ti interface were studied. It was indicated that after annealed at 1273 K for 10 days, 4 reaction layers were formed at the SiC/Ti interface. The diffusion path between SiC and Ti is SiC/Ti3SiC2/Ti5Si3/Ti5Si3+TiC/Ti3Si/Ti. As the annealing time prolong, the thicknesses of these reaction layers increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.