Pesticide-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of zerovalent iron (Fe(0)) to dechlorinate metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl ethyl) acetamide] in the presence of aluminum and iron salts. By treating aqueous solutions of metolachlor with Fe(0), we found destruction kinetics were greatly enhanced when Al, Fe(II), or Fe(II) salts were added, with the following order of destruction kinetics observed: Al2(SO4)3 > AlCl3 > Fe2(SO4)3 > FeCl3. A common observation was the formation of green rusts, mixed Fe(II)-Fe(III) hydroxides with interlayer anions that impart a greenish-blue color. Central to the mechanism responsible for enhanced metolachlor loss may be the role these salts play in facilitating Fe(II) release. By tracking Al and Fe(II) in a Fe(0) + Al2(SO4)3 treatment of metolachlor, we observed that Al was readily sorbed by the corroding iron with a corresponding release of Fe(II). The manufacturing process used to produce the Fe(0) also profoundly affected destruction rates. Metolachlor destruction rates with salt-amended Fe(0) were greater with annealed iron (indirectly heated under a reducing atmosphere) than unannealed iron. Moreover, the optimum pH for metolachlor dechlorination in water and soil differed between iron sources (pH 3 for unannealed, pH 5 for annealed). Our results indicate that metolachlor destruction by Fe(0) treatment may be enhanced by adding Fe or Al salts and creating pH and redox conditions favoring the formation of green rusts.
Electron transfer from zerovalent iron (Fe0) to targeted contaminants is affected by initial Fe0 composition, the oxides formed during corrosion, and surrounding electrolytes. We previously observed enhanced metolachlor destruction by Fe0 when iron or aluminum salts were present in the aqueous matrix and Eh/pH conditions favored formation of green rusts. To understand these enhanced destruction rates, we characterized changes in Fe0 composition during treatment of metolachlor with and without iron and aluminum salts. Raman microspectroscopy and X-ray diffraction (XRD) indicated that the iron source was initially coated with a thin layer of magnetite (Fe3O4), maghemite (gamma-Fe2O3), and wüstite (FeO). Time-resolved analysis indicated that akaganeite (beta-FeOOH) was the dominant oxide formed during Fe0 treatment of metolachlor. Goethite (alpha-FeOOH) and some lepidocrocite (gamma-FeOOH) formed when Al2(SO4)3 was present, while goethite and magnetite (Fe3O4) were identified in Fe0 treatments containing FeSO4. Although conditions favoring formation of sulfate green rust (GR(II); Fe6(OH)12SO4) facilitated Fe0-mediated dechlorination of metolachlor, only adsorption was observed when GR(II) was synthesized (without Fe0) in the presence of metolachlor and Eh/pH changed to favor Fe(III)oxyhydroxide or magnetite formation. In contrast, dechlorination occurred when magnetite or natural goethite was amended with Fe(II) (as FeSO4) at pH 8 and continued as long as additional Fe(II) was provided. While metolachlor was not dechlorinated by GR(II) itself during a 48-h incubation, the GR(II) provided a source of Fe(II) and produced magnetite (and other oxide surfaces) that coordinated Fe(II), which then facilitated dechlorination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.