A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell‐structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth‐order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell‐structured microcapsule when subjected to flow‐induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug‐loaded microcapsule for biomedical applications.
LMPA droplets or particles have contributed to many fields such as the application of sensors and valves, and droplet-based microfluidics has been applied to the preparation of LMPA droplets. Understanding how flow rate, interfacial tension, and temperature affect the formation and solidification of droplets is helpful to design a microfluidic platform. In this study, a coupled VOF and enthalpy-porosity method will be used to numerically simulate how these factors affect the LMPA droplet formation and solidification process. We find that increasing the velocity of the continuous phase or decreasing the interfacial tension will reduce the LMPA droplet size and simultaneously increase the frequency of droplet formation. In addition, increasing the interfacial tension will decrease the required solidification time of LMPA droplets, and the solidification time of droplets will first increase and then decrease with the growth of continuous-phase velocity. On the other hand, increasing the continuous-phase temperature or cooling wall temperature will reduce the solidification time of LMPA droplets, but has no obvious influence on the size and frequency of droplet generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.