The eastern terminations of the Himalayan orogeny, named Namche Barwa, are considered a vital natural laboratory in the Tibetan plateau for geodynamics due to its distinctive geological and geomorphological characteristics. Magnetotelluric (MT) data measured at 83 sites around the Namche Barwa are imaged by three‐dimensional (3‐D) inversion to better reveal the crustal structure of the eastern Himalaya. The results show a complex and heterogeneous electrical structure beneath the Namche Barwa. The electrical conductors distributed in the middle and lower crust around the Namche Barwa provide additional evidence for the “crustal flow” model if they are considered as some parts of the flow in a relatively large‐scale region. The near‐surface resistivity model beneath the inner part of Namche Barwa conforms with the locations of hot spring and fluid inclusions, the brittle‐ductile transition, and the 300°C–400°C isotherm from previous hydrothermal studies. Relatively resistive upper crust (>800 Ωm) is underlain by a more conductive middle to lower crust (<80 Ωm). The electrical characteristics of the thermal structure at shallow depth indicate an accumulation of hydrous melting, a localized conductive steep dipping zone for decompression melting consistent with the “tectonic aneurysm” model for explaining the exhumation mechanism of metamorphic rocks at Namche Barwa. The results also imply that both surface processes and local tectonic responses play a vital role in the evolution of Namche Barwa. An alternative hypothesis that the primary sustained heat source accounts for the local thermal‐rheological structure beneath Namche Barwa is also discussed.
Based on the analysis of the conjugate gradient algorithm, we implement a threedimensional (3D) conjugate gradient inversion algorithm with magnetotelluric impedance data. During the inversion process, the 3D conjugate gradient inversion algorithm doesn' t need to compute and store the Jacobian matrix but directly updates the model from the computation of the Jacobian matrix. Requiring only one forward and four pseudo-forward modeling applications per frequency to produce the model update at each iteration, this algorithm efficiently reduces the computation of the inversion. From a trial inversion with synthetic magnetotelluric data, the validity and stability of the 3D conjugate gradient inversion algorithm is verifi ed.
We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with synthetic and real data. The execution effi ciency of the algorithm for several different situations is also compared. The results indicate that the parallel rapid relaxation algorithm for 3D magnetotelluric inversion is effective. This parallel algorithm implemented on a common PC promotes the practical application of 3D magnetotelluric inversion and can be suitable for the other geophysical 3D modeling and inversion.
With recent advances in the power of computers, three-dimensional (3-D) inversion has become a widely used tool for magnetotelluric (MT) data interpretation (Miensopust, 2017). Some of the most widely used 3-D inversion strategies include the model-space Occam method, the data-space Occam method, the Gauss-Newton (GN) method, the Gauss-Newton with the conjugate gradient (GN-CG) method, the non-linear conjugate gradient (NLCG) method, the quasi-Newton (QN) method and some variants modified from them (Siripunvaraporn, 2012 and references therein), among which the Occam and the GN-CG methods are derived from the GN method. Each of these strategies is feasible for 3-D inversion of MT data and the efficiency of a particular algorithm depends largely on the code implementation. Our inversion utilizes the NLCG algorithm which has low memory requirements and a relatively fast convergence rate (Newman & Alumbaugh, 2000).With a few exceptions, previously developed algorithms for the 3-D inversion of MT data only considered an Earth model with an isotropic resistivity structure. While this assumption is often valid, there are some
Using the staggered-grid finite difference method, a numerical modeling algorithm for a 3D arbitrary anisotropic Earth is implemented based on magnetotelluric (MT) theory. After the validation of this algorithm and comparison with predecessors, it was applied to several qualitative and quantitative analyses containing electrical anisotropy and a simple 3D prism model. It was found that anisotropic parameters for ρ 1 , ρ 2 , and ρ 3 play almost the same role in affecting 3D MT responses as in 1D and 2D without considering three Euler's angles α S , α D , and α L . Significant differences appear between the off-diagonal components of the apparent resistivity tensor and also between the diagonal components in their values and distributing features under the influence of 3D anisotropy, which in turn help to identify whether the MT data are generated from 3D anisotropic earth. Considering the deflecting effects arising from the inconsistency between the anisotropy axes and the measuring axes, some strategies are also provided to estimate the deflecting angles associated with anisotropy strike α S or dip α D , which may be used as initial values for the 3D anisotropy inversion. [Figure: see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.