Supramolecular architectures are constructed by the self‐assembly of small building blocks via the use of metal‐ligand coordination, π–π stacking interactions, hydrogen bonding, host‐guest interactions, and other noncovalent driving forces, which confer unique dynamic reversibility and stimulus responsiveness to the supramolecular materials and also lead to the demand of expensive and complex equipment for the characterization of supramolecular assembly processes. Fortunately, the self‐assembly processes bring the monomeric chromophores together, offering possibilities to establish ties between the supramolecular assembly and aggregation‐induced emission (AIE) techniques. Compared to conventional luminescent molecules, AIE luminogens (AIEgens) exhibit significant fluorescence enhancement upon the restriction of molecular motions, thus displaying the advantages of signal amplification and low background noises. Given the above, the real‐time, sensitive, and in situ visualization of the formation of self‐assemblies and their stimuli responsiveness based on AIE becomes accessible. Here, we review recent works that encompass the visualization of supramolecular assembly‐related behaviors by means of AIE characteristics of chromophores. The organization of this review will be by different types of supramolecular architectures, including metallacycles/cages, micelles/vesicles, supramolecular polymers, and supramolecular gels. An overview of future opportunities and challenges for the real‐time monitoring of supramolecular assembly by AIE is also provided.
Fungal infection poses and increased risk to human health. Photodynamic therapy (PDT) as an alternative antifungal approach garners much interest due to its minimal side effects and negligible antifungal drug resistance. Herein, we develop stereoisomeric photosensitizers ((Z)- and (E)-TPE-EPy) by harnessing different spatial configurations of one molecule. They possess aggregation-induced emission characteristics and ROS, viz. 1O2 and O2−• generation capabilities that enable image-guided PDT. Also, the cationization of the photosensitizers realizes the targeting of fungal mitochondria for antifungal PDT killing. Particularly, stereoisomeric engineering assisted by supramolecular assembly leads to enhanced fluorescence intensity and ROS generation efficiency of the stereoisomers due to the excited state energy flow from nonradiative decay to the fluorescence pathway and intersystem (ISC) process. As a result, the supramolecular assemblies based on (Z)- and (E)-TPE-EPy show dramatically lowered dark toxicity without sacrificing their significant phototoxicity in the photodynamic antifungal experiments. This study is a demonstration of stereoisomeric engineering of aggregation-induced emission photosensitizers based on (Z)- and (E)-configurations.
Printing electronic components by screen printing with the excellent printing quality, high efficiency, and environmental protection has broad application prospects in additive manufacturing. However, because conductive-ink blocks the screen, printing efficiency and quality decreased in the printing process. Thus, it is pivotal to explore adhesion factors from the interaction of conductive ink and screen. Herein, according to the transfer process of screen printing ink, solid-liquid wetting theory, and adhesion mechanism, we establish a liquid bridge adhesion model between two plates and obtain the functional relationship between the adhesion force and its influencing factors. Fluent software verifies the adhesion force model's conclusion to get the influence trend of the adhesion force on the ink residue. At last, by establishing a liquid bridge tensile fracture test, we gain experimental results consistent with the theoretical model and numerical simulation results. It is demonstrated that solid-liquid contact angle, tensile distance, and liquid volume are the main factors affecting the change of solid-liquid adhesion. The increase of tensile distance and contact angle will affect the adhesion force. The smaller the maximum solid-liquid adhesion during the initial stretching of the liquid bridge, the less the residual amount remained on the solid surface. By means of screen modification, the adhesion between conductive ink and screen can be reduced; meanwhile, the efficiency and quality of printed products can be improved. What's more, it also provides a valuable reference for the modification of screen printing electronics.
The human health crisis caused by fungal infection is impending. Photodynamic therapy (PDT) as an alternative antifungal approach has garnered much interest due to its minimal side effects and negligible antifungal drug resistance. Herein, we develop stereoisomeric photosensitizers ((Z)- and (E)-TPE-EPy) by harnessing different spatial configurations of one molecule. They possess aggregation-induced emission characteristics and ROS, viz. 1O2 and O2−• generation capabilities that enable image-guided PDT. Also, the cationization of the photosensitizers realizes targeting of fungal mitochondria for antifungal PDT killing. Particularly, stereoisomeric engineering assisted by supramolecular assembly leads to enhanced fluorescence intensity and ROS generation efficiency of the stereoisomers due to the excited state energy flow from nonradiative decay to the fluorescence pathway and intersystem (ISC) process. As a result, the supramolecular assemblies based on (Z)- and (E)-TPE-EPy show dramatically lowered dark toxicity without sacrificing their significant phototoxicity in the photodynamic antifungal experiments. This study is the first demonstration of stereoisomeric engineering of aggregation-induced emission photosensitizers based on (Z)- and (E)-configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.