The Xinjiang region of China is among the most sensitive regions to global warming. Based on the meteorological and hydrological observation data, the regional wet-to-dry climate regime shifts in Xinjiang were analyzed and the impacts of climatic shift on the eco-hydrological environment of Xinjiang were assessed in this study. The results showed that temperature and precipitation in Xinjiang have increased since the mid-1980s, showing a warming-wetting trend. However, drought frequency and severity significantly increased after 1997. The climate of Xinjiang experienced an obvious shift from a warm-wet to a warm-dry regime in 1997. Since the beginning of the 21st century, extreme temperatures and the number of high temperature days have significantly increased, the start date of high temperature has advanced, and the end date of high temperature has delayed in Xinjiang. In addition, the intensity and frequency of extreme precipitation have significantly increased. Consequently, regional ecology and water resources have been impacted by climatic shift and extreme climate in Xinjiang. In response, satellite-based normalized difference vegetation index showed that, since the 1980s, most regions of Xinjiang experienced a greening trend and vegetation browning after 1997. The soil moisture in Xinjiang has significantly decreased since the late 1990s, resulting in adverse ecological effects. Moreover, the response of river runoff to climatic shift is complex and controlled by the proportion of snowmelt to the runoff. Runoff originating from the Tianshan Mountains showed a positive response to the regional wet-to-dry shift, whereas that originating from the Kunlun Mountains showed no obvious response. Both climatic shift and increased climate extremes in Xinjiang have led to intensification of drought and aggravation of instability of water circulation systems and ecosystem. This study provides a scientific basis to meet the challenges of water resource utilization and ecological risk management in the Xinjiang region of China.
This research analyzed the spatiotemporal patterns of drought in Xinjiang (northwestern China) between 1961 and 2015 using the standardized precipitation evapotranspiration index (SPEI). Furthermore, the correlations between Atlantic Multidecadal Oscillation (AMO)/El Niño–Southern Oscillation (ENSO) events and drought were explored. The results suggested an obvious trend toward aggravated drought, with a significant inflection point in 1997, after which the frequency of drought increased sharply. Spatially, the increase in drought occurred largely in southern and eastern Xinjiang, where occurrences of moderate and extreme drought have become more frequent during the last two decades, whereas northwestern Xinjiang and the Pamir Plateau showed wetting trends. Empirical orthogonal function analysis (EOF) of drought patterns showed a north–south antiphase and an east–west antiphase distribution. The positive (negative) phase of the AMO was related to increased (decreased) drought in Xinjiang, particularly after 1997. During a warm phase (El Niño), major droughts occurred over northern Xinjiang, but they lagged by 12 months. However, not all El Niño and La Niña events were responsible for drought events in northern Xinjiang during this period, and other drivers remain to be identified. This study suggests the possibility of AMO and ENSO links to drought in Xinjiang, but further analysis is needed to better understand such mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.