We report for the first time the growth of GaAs nanowires directly on low-cost glass substrates using atmospheric pressure metal organic vapor phase epitaxy via a vapor-liquid-solid mechanism with gold as catalyst. Substrates used in this work were of float glass type typically seen in household window glasses. Growth of GaAs nanowires on glass were investigated for growth temperatures between 410 and 580 °C. Perfectly cylindrical nontapered nanowires with a growth rate of ~33 nm/s were observed at growth temperatures of 450 and 470 °C, whereas highly tapered pillar-like wires were observed at 580 °C. Nanowires grew horizontally on the glass surface at 410 °C with a tendency to grow in vertically from the substrate as the growth temperature was increased. X-ray diffraction and transmission electron microscopy revealed that the nanowires have a perfect zinc blende structure with no planar structural defects or stacking faults. Strong photoluminescence emission was observed both at low temperature and room temperature indicating a high optical quality of GaAs nanowires. Growth comparison on impurity free fused silica substrate suggests unintentional doping of the nanowires from the glass substrate.
Growth and characterization of iron-doped semi-insulating InP buffer layers for Al-free GaInP/GaInAs high electron mobility transistors
Semiconductor nanowires are routinely grown on high-priced crystalline substrates as it is extremely challenging to grow directly on plastics and flexible substrates due to high-temperature requirements and substrate preparation. At the same time, plastic substrates can offer many advantages such as extremely low price, light weight, mechanical flexibility, shock and thermal resistance, and biocompatibility. We explore the direct growth of high-quality III–V nanowires on flexible plastic substrates by metal-organic vapor phase epitaxy (MOVPE). We synthesize InAs and InP nanowires on polyimide and show that the fabricated NWs are optically active with strong light emission in the mid-infrared range. We create a monolithic flexible nanowire-based p–n junction device on plastic in just two fabrication steps. Overall, we demonstrate that III–V nanowires can be synthesized directly on flexible plastic substrates inside a MOVPE reactor, and we believe that our results will further advance the development of the nanowire-based flexible electronic devices.
We report a new phenomenon related to Al-induced carrier confinement at the interface in core-shell GaAs/Al(x)Ga(1-x)As nanowires grown using metal-organic vapor phase epitaxy with Au as catalyst. All Al(x)Ga(1-x)As shells strongly passivated the GaAs nanowires, but surprisingly the peak photoluminescence (PL) position and the intensity from the core were found to be a strong function of Al composition in the shell at low temperatures. Large and systematic red shifts of up to ~66 nm and broadening in the PL emission from the GaAs core were observed when the Al composition in the shell exceeded 3%. On the contrary, the phenomenon was observed to be considerably weaker at the room temperature. Cross-sectional transmission electron microscopy reveals Al segregation in the shell along six Al-rich radial bands displaying a 3-fold symmetry. Time-resolved PL measurements suggest the presence of indirect electron-hole transitions at the interface at higher Al composition. We discuss all possibilities including a simple shell-core-shell model using simulations where the density of interface traps increases with the Al content, thus creating a strong local electron confinement. The carrier confinement at the interface is most likely related to Al inhomogeneity and/or Al-induced traps. Our results suggest that a low Al composition in the shell is desirable in order to achieve ideal passivation in GaAs nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.