Recent technological advancements in wearable sensors have made it easier to detect sweat components, but our limited understanding of sweat restricts its application. A critical bottleneck for temporal and regional sweat analysis is achieving uniform, high-throughput fabrication of sweat sensor components, including microfluidic chip and sensing electrodes. To overcome this challenge, we introduce microfluidic sensing patches mass fabricated via roll-to-roll (R2R) processes. The patch allows sweat capture within a spiral microfluidic for real-time measurement of sweat parameters including [Na+], [K+], [glucose], and sweat rate in exercise and chemically induced sweat. The patch is demonstrated for investigating regional sweat composition, predicting whole-body fluid/electrolyte loss during exercise, uncovering relationships between sweat metrics, and tracking glucose dynamics to explore sweat-to-blood correlations in healthy and diabetic individuals. By enabling a comprehensive sweat analysis, the presented device is a crucial tool for advancing sweat testing beyond the research stage for point-of-care medical and athletic applications.
Development of reliable glucose sensors for noninvasive monitoring without interruption or limiting users' mobility is highly desirable, especially for diabetes diagnostics, which requires routine/long-term monitoring. However, their applications are largely limited by the relatively poor stability. Herein, a porous membrane is synthesized for effective enzyme immobilization and it is robustly anchored to the modified nanotextured electrode solid contacts, so as to realize glucose sensors with significantly enhanced sensing stability and mechanical robustness. To the best of our knowledge, this is the first report of utilizing such nanoporous membranes for electrochemical sensor applications, which eliminates enzyme escape and provides a sufficient surface area for molecular/ion diffusion and interactions, thus ensuring the sustainable catalytic activities of the sensors and generating reliable measureable signals during noninvasive monitoring. The as-assembled nanostructured glucose sensors demonstrate reliable long-term stable monitoring with a minimal response drift for up to 20 h, which delivers a remarkable enhancement. Moreover, they can be integrated into a microfluidic sensing patch for noninvasive sweat glucose monitoring. The as-synthesized nanostructured glucose sensors with remarkable stability can inspire developments of various enzymatic biosensors for reliable noninvasive composition analysis and their ultimate applications in predictive clinical diagnostics, personalized health-care monitoring, and chronic diseases management.
Stretchable electronics has attracted much interest recently because of its potential applications in the area of wearable electronics and healthcare. Highly elastic polydimethyl siloxane (PDMS) has been for decades a widely used material in prototyping purposes. It enables the realization of a variety of mechanical and optical functions besides being a substrate for other processes or applications. As a substrate, PDMS enables high stretchability and easy integration of other parts made of PDMS. In this work, we demonstrated a high-volume production of stretchable electrical interconnections on PDMS substrates. We used roll-to-roll (R2R) rotary screen printing that has been conventionally applied in high-throughput fabrication of electronics on flexible, but not stretchable, substrates. We demonstrated silver interconnects whose conductivity remains sufficient for signal transmission, for example, in sensor structures under repeated 20% strain over 100 cycles. We also demonstrated R2R compatible PDMS encapsulation of electrical interconnections that increased the strain repetition durability by a factor of 2.
Sustainability in electronics has a growing importance due to, e.g. increasing electronic waste, and global and European sustainability goals. Printing technologies and use of paper as a substrate enable manufacturing of sustainable electronic devices for emerging applications, such as the multi-layer anti-counterfeit label presented in this paper. This device consisted of electrochromic display (ECD) element, NFC (near field communication) tag and circuitry, all fully roll-to-roll (R2R) printed and assembled on plastic-free paper substrate, thus leading to a sustainable and recyclable device. Our setup uses harvested energy from HF field of a smartphone or reader, to switch an electrochromic display after rectification to prove authenticity of a product. Our novelty is in upscaling the manufacturing process to be fully printable and R2R processable in high-throughput conditions simulating industrial environment, i.e. in pilot scale. The printing workflow consisted of 11 R2R printed layers, all done in sufficient quality and registration. The printed antennas showed sheet resistance values of 32.9±1.9 mΩ/sq. The final yield was almost 1500 fully printed devices, and in R2R assembly over 1400 labels were integrated with 96.5% yield. All the assembled tags were readable with mobile phone NFC reader. The optical contrast (ΔE*) measured for the ECDs was over 15 for all the printed displays, a progressive switching time with a colour change visible in less than 5 s. The smart tag is ITO-free, plastic-free, fully printed in R2R and has a good stability over 50 cycles and reversible colour change from light to dark blue.
Novel continuous and mass customizable lightemitting diode (LED) lighting foil system, capable to produce adequate lighting levels for general lighting, was designed, processed, and characterized. Lighting element substrate was processed by roll-to-roll (R2R) printing using silver ink and automatic bonding of LEDs and current regulators on polyethylene terephthalate (PET) substrate using isotropic conductive adhesive (ICA). Demonstrator consisting of two basic lighting elements contained 98 LEDs and produced 860 lm when running with 25 mA operational current through the LEDs when using total electrical driving power of 8.4 W. Measured power conversion efficiency of the demonstrator was 31 % and efficacy 102 lm/W. Element produced 460 lx illumination level measured by an illumination level meter at element's central axis at distance of 1 m. At a distance of 2 m, illumination level was 110 lx, respectively. Temperature measurements with T3Ster thermal characterization instrument showed that when driving LED with maximum nominal driving current of 100 mA, LED junction temperature was about 120°C, when lighting element was in air in room temperature. Accelerated environmental stress tests consisting of 500 cycles from −40 … +80°C in aging oven and 1000 h in +60°C/95 % RH climate chamber were performed to test samples without any failures. In addition, over 700 bending cycles using 20 mm bending radius were performed to test samples without any failures, so bonding of LEDs were shown reliable according to these tests. Achieved results proved that thin, flexible, and large area high luminous flux lighting elements and systems can be processed based on plastic foil manufactured using R2R silver ink printing and R2R automatic bonding of LEDs and regulator components using ICA on that foil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.