Arctic trends of integrated water vapor were analyzed based on four reanalyses and radiosonde data over 1979–2016. Averaged over the region north of 70°N, the Arctic experiences a robust moistening trend that is smallest in March (0.07 ± 0.06 mm decade−1) and largest in August (0.33 ± 0.18 mm decade−1), according to the reanalyses’ median and over the 38 years. While the absolute trends are largest in summer, the relative ones are largest in winter. Superimposed on the trend is a pronounced interannual variability. Analyzing overlapping 30-yr subsets of the entire period, the maximum trend has shifted toward autumn (September–October), which is related to an accelerated trend over the Barents and Kara Seas. The spatial trend patterns suggest that the Arctic has become wetter overall, but the trends and their statistical significance vary depending on the region and season, and drying even occurs over a few regions. Although the reanalyses are consistent in their spatiotemporal trend patterns, they substantially disagree on the trend magnitudes. The summer and the Nordic and Barents Seas, the central Arctic Ocean, and north-central Siberia are the season and regions of greatest differences among the reanalyses. We discussed various factors that contribute to the differences, in particular, varying sea level pressure trends, which lead to regional differences in moisture transport, evaporation trends, and differences in data assimilation. The trends from the reanalyses show a close agreement with the radiosonde data in terms of spatiotemporal patterns. However, the scarce and nonuniform distribution of the stations hampers the assessment of central Arctic trends.
The occurrence and characteristics of Arctic specific humidity inversions (SHIs) were examined on the basis of two reanalyses (ERA-Interim and JRA-55) and radiosonde sounding data from 2003 to 2014. Based on physical properties, the SHIs were divided into two main categories: SHIs below and above the 800-hPa level. Above the 800-hPa level, SHIs occurred simultaneously with relative humidity inversions and without the presence of a temperature inversion; these SHIs were probably formed when a moist air mass was advected over a dry air mass. SHIs below the 800-hPa level occurred simultaneously with temperature inversions in conditions of high relative humidity, which suggests that condensation had an important role in SHI formation. Below the 800-hPa level, SHI occurrence had a large seasonal and spatial variation, which depended on the surface heat budget. In winter, most SHIs were formed because of surface radiative cooling, and the occurrence of SHIs was high (even exceeding 90% of the time) on continents and over the ice-covered Arctic Ocean. In summer, the occurrence of SHIs was highest (70%–90%) over the coastal Arctic Ocean, where SHIs were generated by warm and moist air advection over a cold sea surface. In the reanalyses, the strongest SHIs occurred in summer over the Arctic Ocean. The comparisons between radiosonde soundings and the reanalyses showed that the main features of the seasonal and spatial variation of SHI occurrence and SHI strength were well represented in the reanalyses, but SHI strength was underestimated.
Horizontal moisture transport has a manifold role in the Arctic climate system as it distributes atmospheric water vapour and thereby shapes the radiative and hydrological conditions. Moisture transport between the Arctic and the mid‐latitudes was examined based on ERA‐Interim reanalysis. The meridional net transport is only a small part of the water vapour exchange between the Arctic and mid‐latitudes and does not give a complete view of temporal and spatial variations in the transport. Especially near the surface, most of the northwards moisture transport is balanced by the southwards transport, and therefore the meridional net moisture transport at 60°–70°N peaks approximately at 100 hPa higher altitude than the northwards and southwards moisture transports. The total moisture transport (sum of absolute northwards and southwards moisture transports) has a much larger seasonal variation than the net transport (mean meridional transport), and the strength of the total transport is related to atmospheric humidity rather than the wind field. Strong individual moisture transport events contribute to a large part of the northwards moisture transport. This is consistent with the result that the net moisture transport is essentially generated by temporal variations of moisture fluxes. The moisture transport due to stationary zonal variation in the mass flux mostly defines the spatial distribution of the meridional moisture transport. The seasonal cycle of the net moisture transport is related to the seasonal cycle of transient eddy moisture transport but inter‐annual variations of the net moisture transport are largely influenced by the stationary eddy moisture transport.
This study gives a comprehensive picture of how atmospheric large-scale circulation is related to moisture transport and to distributions of moisture, clouds, and surface downward longwave radiation in the Arctic in winter. Anomaly distributions of the abovementioned variables are compared in 30 characteristic wintertime atmospheric circulation regimes, which are allocated from 15 years (2003–17) of mean sea level pressure data of ERA-Interim reanalysis applying the self-organizing map method. The characteristic circulation regimes are further related to known climate indices—the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), and Greenland blocking index—as well as to a frequent high pressure pattern across the Arctic Ocean from Siberia to North America, herein called the Arctic bridge. Effects of large-scale circulation on moisture, cloud, and longwave radiation are to a large extent occurring through the impact of horizontal moisture transport. Evaporation is typically not efficient enough to shape those distributions, and much of the moisture evaporated in the Arctic is transported southward. The positive phase of the NAO and AO increases moisture and clouds in northern Europe and the eastern North Atlantic Ocean, and a strong Greenland blocking typically increases those in the southwest of Greenland. When the Arctic bridge is lacking, the amount of moisture, clouds, and downward longwave radiation is anomalously high near the North Pole. Our results reveal a strong dependence of moisture, clouds, and longwave radiation on atmospheric pressure fields, which also appears to be important from a climate change perspective.
The radiosounding network in the Arctic, despite being sparse, is a crucial part of the atmospheric observing system for weather prediction and reanalysis. The spatial coverage of the network was evaluated using a numerical weather prediction model, comparing radiosonde observations from Arctic land stations and expeditions in the central Arctic Ocean with operational analyses and background fields (12‐hr forecasts) from European Centre for Medium‐Range Weather Forecasts for January 2016 to September 2018. The results show that the impact of radiosonde observations on analyses has large geographical variation. In data‐sparse areas, such as the central Arctic Ocean, high‐quality radiosonde observations substantially improve the analyses, while satellite observations are not able to compensate for the large spatial gap in the radiosounding network. In areas where the network is reasonably dense, the quality of background field is more related to how radiosonde observations are utilized in the assimilation and to the quality of those observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.