Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key systems-level mechanism for coordination of neuronal processing and communication between brain regions. Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In humans, neuronal activity can be non-invasively recorded only with magneto- and electroencephalography (MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or "source leakage", is a significant confounder for FC analyses and network localization. Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data. Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis.
Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude that the distinctive postural and kinematic symmetry in instrument playing cross-modally shapes information processing in sensory-motor cortical areas during music listening. This cross-modal plasticity suggests that motor training affects music perception.
BackgroundReproducibility of research findings has been recently questioned in many fields of science, including psychology and neurosciences. One factor influencing reproducibility is the simultaneous testing of multiple hypotheses, which entails false positive findings unless the analyzed p-values are carefully corrected. While this multiple testing problem is well known and studied, it continues to be both a theoretical and practical problem. New MethodHere we assess reproducibility in simulated experiments in the context of multiple testing. We consider methods that control either thefamily-wise error rate (FWER) or false discovery rate (FDR), including techniques based on random field theory (RFT), cluster-mass based permutation testing, and adaptive FDR. Several classical methods are also considered. The performance of these methods is investigated under two different models. ResultsWe found that permutation testing is the most powerful method among the considered approaches to multiple testing, and that grouping hypotheses based on prior knowledge can improve power. We also found that emphasizing primary and follow-up studies equally produced most reproducible outcomes. Comparison with Existing Method(s)We have extended the use of two-group and separate-classes models for analyzing reproducibility and provide a new open-source software "MultiPy" for multiple hypothesis testing. ConclusionsOur simulations suggest that performing strict corrections for multiple testing is not sufficient to improve reproducibility of neuroimaging experiments. The methods are freely available as a Python toolkit "MultiPy" and we aim this study to help in improving statistical data analysis practices and to assist in conducting power and reproducibility analyses for new experiments.
Recent functional studies suggest that noise sensitivity, a trait describing attitudes towards noise and predicting noise annoyance, is associated with altered processing in the central auditory system. In the present work, we examined whether noise sensitivity could be related to the structural anatomy of auditory and limbic brain areas. Anatomical MR brain images of 80 subjects were parcellated with FreeSurfer to measure grey matter volume, cortical thickness, cortical area and folding index of anatomical structures in the temporal lobe and insular cortex. The grey matter volume of amygdala and hippocampus was measured as well. According to our findings, noise sensitivity is associated with the grey matter volume in the selected structures. Among those, we propose and discuss particular areas, previously linked to auditory perceptual, emotional and interoceptive processing, in which larger grey matter volume seems to be related to higher noise sensitivity.
Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.