As a step towards studying human-agent collectives we conduct an online game with human participants cooperating on a network. The game is presented in the context of achieving group formation through local coordination. The players set initially to a small world network with limited information on the location of other players, coordinate their movements to arrange themselves into groups. To understand the decision making process we construct a data-driven model of agents based on probability matching. The model allows us to gather insight into the nature and degree of rationality employed by the human players. By varying the parameters in agent based simulations we are able to benchmark the human behaviour. We observe that while the players utilize the neighbourhood information in limited capacity, the perception of risk is optimal. We also find that for certain parameter ranges the agents are able to act more efficiently when compared to the human players. This approach would allow us to simulate the collective dynamics in games with agents having varying strategies playing alongside human proxies.
Biometric authentication, namely using biometric features for authentication is gaining popularity in recent years as further modalities, such as fingerprint, iris, face, voice, gait, and others are exploited. We explore the effectiveness of three simple Electroencephalography (EEG) related biometric authentication tasks, namely resting, thinking about a picture, and moving a single finger. We present details of the data processing steps we exploit for authentication, including extracting features from the frequency power spectrum and MFCC, and training a multilayer perceptron classifier for authentication. For evaluation purposes, we record an EEG dataset of 27 test subjects. We use three setups, baseline, task-agnostic, and task-specific, to investigate whether person-specific features can be detected across different tasks for authentication. We further evaluate, whether different tasks can be distinguished. Our results suggest that tasks are distinguishable, as well as that our authentication approach can work both exploiting features from a specific, fixed, task as well as using features across different tasks.
Coordination and cooperation between humans and autonomous agents in cooperative games raise interesting questions on human decision making and behaviour changes. Here we report our findings from a group formation game in a small-world network of different mixes of human and agent players, aiming to achieve connected clusters of the same colour by swapping places with neighbouring players using non-overlapping information. In the experiments the human players are incentivized by rewarding to prioritize their own cluster while the model of agents’ decision making is derived from our previous experiment of purely cooperative game between human players. The experiments were performed by grouping the players in three different setups to investigate the overall effect of having cooperative autonomous agents within teams. We observe that the human subjects adjust to autonomous agents by being less risk averse, while keeping the overall performance efficient by splitting the behaviour into selfish and cooperative actions performed during the rounds of the game. Moreover, results from two hybrid human-agent setups suggest that the group composition affects the evolution of clusters. Our findings indicate that in purely or lesser cooperative settings, providing more control to humans could help in maximizing the overall performance of hybrid systems.
Information on cyber-related crimes, incidents, and conflicts is abundantly available in numerous open online sources. However, processing large volumes and streams of data is a challenging task for the analysts and experts, and entails the need for newer methods and techniques. In this article we present and implement a novel knowledge graph and knowledge mining framework for extracting the relevant information from free-form text about incidents in the cyber domain. The computational framework includes a machine learning-based pipeline for generating graphs of organizations, countries, industries, products and attackers with a non-technical cyber-ontology. The extracted knowledge graph is utilized to estimate the incidence of cyberattacks within a given graph configuration. We use publicly available collections of real cyber-incident reports to test the efficacy of our methods. The knowledge extraction is found to be sufficiently accurate, and the graph-based threat estimation demonstrates a level of correlation with the actual records of attacks. In practical use, an analyst utilizing the presented framework can infer additional information from the current cyber-landscape in terms of the risk to various entities and its propagation between industries and countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.