The European component of the joint ESA-NASA Asteroid Impact & Deflection Assessment (AIDA) mission has been redesigned from the original version called Asteroid Impact Mission (AIM), and is now called Hera. The main objectives of AIDA are twofold: (1) to perform an asteroid deflection test by means of a kinetic impactor under detailed study at NASA (called DART, for Double Asteroid Redirection Test); and (2) to investigate with Hera the changes in geophysical and dynamical properties of the target binary asteroid after the DART impact. This joint mission will allow extrapolating the results of the kinetic impact to other asteroids and therefore fully
This paper presents an overview and the current status of hosting the electrostatic plasma brake (EPB) experiment onboard the Finnish Aalto-1 satellite. The goal of the experiment is to demonstrate the use of an electrostatically charged tether for satellite attitude and orbital maneuvers. The plasma brake device is based on electrostatic solar sail concept, invented in Finnish Meteorological Institute (FMI). The electrostatic solar sail is designed to utilize the solar wind charged particles to propel the spacecraft by using long conductive tethers, surrounded by electrostatic field. Similar phenomenon can be used in low Earth orbit plasma environment, where the relative motion between the electrostatically charged tether and the ionospheric plasma can produce a significant amount of drag. This drag can be utilized for deorbiting the satellite. The Aalto-1, a multi-payload CubeSat, will carry, among others, the plasma brake payload. Plasma brake payload consists of a 100 m long conductive tether, a reel mechanism for tether storage, a high voltage source, and electron guns to maintain the tether charge. The experiment will be performed in positive and negative tether charge modes and includes a long term passive deorbiting mode. The experiment hardware, the satellite mission and different phases of the experiment are presented.
Operation of a small CubeSat in the deep-space microgravity environment brings additional challenging factors including the increased radiation environment, the significant contribution of non-gravitational forces to the satellite orbit, or the limited communication opportunities. These factors need to be taken into account in the form of modifications to the classic CubeSat architecture. Increased radiation resistance, the semi-autonomous satellite operation, navigation, and the active orbit correction are required. Such a modified CubeSat platform can potentially deliver a high performance to mass and cost ratios. The Asteroid Spectral Imaging Mission (ASPECT) is a three unit (3U) CubeSat mission built on these principles. It is part of the AIDA (Asteroid Impact & Deflection Assessment) project to the binary asteroid Didymos. ASPECT is equipped with a visible to near-infrared hyperspectral imager and will deliver both technological knowledge as well as scientific data about the origin and evolution of Solar System small bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.