The effect of base sequence on the structure and flexibility of linear single-stranded RNA molecules and the influence of the base sequence on phosphodiester bond reactivity have been studied. Molecular dynamics simulations of 2.1 ns were carried out for nine chimeric oligonucleotides containing only one unsubstituted ribo unit, all the rest of sugars being 2'-O-methylated. The base sequence has recently been reported to make a big contribution to the reactivity of these compounds. A detailed examination of the interaction energies between the base moieties shows that base stacking is strongly context-dependent and cooperative. The strength of stacking at the site susceptible to chain cleavage by intramolecular transesterification was observed to be dependent on both the flanking bases of the cleavage site and those further apart in the molecule. The interaction energies between the bases in the vicinity of the scissile linkage were found to correlate well with the experimental phosphodiester bond cleavage rates: the stronger the bases close to the cleavage site are stacked, the slower the cleavage rate is.
The peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor (NR) that forms a heterodimeric transcription factor complex with the retinoid X receptor alpha (RXRalpha). The phenomenon that the heterodimer can be activated by both PPARalpha and RXRalpha ligands, while both ligands have a synergistic effect on its activity suggests that there is an allosteric communication within the heterodimer. In this study, the molecular mechanism of this allosteric signaling was studied by molecular dynamics (MD) simulations and some of the residues involved in this communication were tested experimentally. Multiple MD simulations were done for the PPARalpha-RXRalpha heterodimer ligand-binding domains (LBDs) without ligands, with agonistic ligand bound to RXRalpha or PPARalpha, and ligand bound to both receptors. Fluctuation calculations and structural clustering analysis of the heterodimer MD simulations showed that ligand binding to RXRalpha decreases fluctuations of large parts of PPARalpha, most notably helices 3 and 4 at the coactivator binding site, which presumably stabilizes the coactivator binding to heterodimer complex. The dynamics of helix 8-9 loop and helix 10/11 located at the heterodimeric interface were affected by RXRalpha ligand binding, suggesting that these parts of the dimer are involved in allosteric communication. Experimental data complemented this view by showing that a large set of residues at the heterodimerization surface has a role in the communication. These results provided evidence that RXRalpha ligand binding-induced stabilization of PPARalpha coactivator binding site has a role in the permissive and synergistic activation of the PPARalpha-RXRalpha heterodimer. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.