Background
The objective of the present work was to assess the reactogenicity and immunogenicity of heterologous COVID-19 vaccination regimens in clinical trials and observational studies.
Methods
PubMed, Cochrane Library, Embase, MedRxiv, BioRxiv databases were searched in September 29, 2021. The PRISMA instruction for systemic review was followed. Two reviewers independently selected the studies, extracted the data and assessed risk of bias. The quality of studies was evaluated using the New Castle-Ottawa and Cochrane risk of instrument. The characteristics and study outcome (e.g., adverse events, immune response, and variant of concern) were extracted.
Results
Nineteen studies were included in the final data synthesis with 5 clinical trials and 14 observational studies. Heterologous vaccine administration showed a trend toward more frequent systemic reactions. However, the total reactogenicity was tolerable and manageable. Importantly, the heterologous prime-boost vaccination regimens provided higher immunogenic effect either vector/ mRNA-based vaccine or vector/ inactivated vaccine in both humoral and cellular immune response. Notably, the heterologous regimens induced the potential protection against the variant of concern, even to the Delta variant.
Conclusions
The current findings provided evidence about the higher induction of robust immunogenicity and tolerated reactogenicity of heterologous vaccination regimens (vector-based/mRNA vaccine or vector-based/inactivated vaccine). Also, this study supports the application of heterologous regimens against COVID-19 which may provide more opportunities to speed up the global vaccination campaign and maximize the capacity to control the pandemic.
Indigofera zollingeriana Miq (I. zollingeriana) is a widely grown tree in Vietnam. It is used to cure various illnesses. The purpose of this study was to investigate the chemical constituents of an I. zollingeriana extract and test its anticancer activity on hepatocellular cells (Huh7 and HepG2). The experimental results of the analysis of the bioactive compounds revealed that β-sitosterol (β-S) and β-sitosterol-glucoside (β-SG) were the main ingredients of the I. zollingeriana extract. Regarding anticancer activity, the β-S and β-SG of I. zollingeriana were found to exhibit cytotoxic effects against HepG2 and Huh7 cells, but not against normal human primary fibroblasts. The β-S was able to inhibit the proliferation of HepG2 and Huh7 cells in a dose-dependent manner with half-maximal inhibitory concentration (IC50) values of 6.85 ± 0.61 µg/mL and 8.71 ± 0.21 µg/mL, respectively (p < 0.01), whereas the β-SG IC50 values were 4.64 ± 0.48 µg/mL for HepG2 and 5.25 ± 0.14 µg/mL for Huh7 cells (p < 0.01). Remarkably, our study also indicated that β-S and β-SG exhibited cytotoxic activities via inducing apoptosis and activating caspase-3 and -9 in these cells. These findings demonstrated that β-S and β-SG from I. zollingeriana could potentially be developed into promising therapeutic agents to treat liver cancer.
The SARS-CoV-2 virus continues to overwhelm health care systems impairing human to human social and economic interactions. Invasion or damage to the male reproductive system is one of the documented outcomes of viral infection. Existing studies have reported that SARS-CoV-2 may contribute to this loss in relation to inflammatory responses and the formation of cytokine storms in COVID-19 patients. Although direct infection of the testes and entry of SARS-CoV-2 into semen as well as subsequent consequences on the male reproductive system need to be studied more systematically, warnings from two organising ASRM and SART for prospective parents when infected with SARS-CoV-2 should be considered. In the context of an increasingly complex pandemic, this review provides preliminary examples of the potential impact of COVID-19 on male reproductive health and guidance for prospective parents currently infected with or recovering from SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.