A rapid LC-MS/MS method was developed for the quantitative determination of grayanotoxins I, II, and III in rumen contents, feces, and urine. The grayanotoxins were extracted from solid samples with methanol. The methanol extract was diluted with water and cleaned up using a reversed phase solid phase extraction column. HPLC separation was performed by reversed phase HPLC using a gradient of water and methanol containing 1% acetic acid. Determination was by positive ion electrospray ionization and ion trap tandem mass spectrometry. Grayanotoxin I quantitation was based on fragmentation of the sodium adduct ion at m/z 435 to a product ion at m/z 375. Grayanotoxins II and III were quantitated on the basis of fragmentation of the ion at m/z 335 to the product ion at m/z 299. The method detection limits were 0.2 microg/g in rumen contents and feces and 0.05 microg/g in urine. Fortifications at the detection limits and 10 times the detection limits of bovine rumen contents, caprine feces, and ovine urine were recovered in the range 80-114%. The diagnostic utility of the method was tested by analyzing samples submitted to the veterinary toxicology laboratory.
The aim of this study was to valorize liquid effluent from the sunflower protein isolate process by extracting phenolic compounds it contains. To do so, XAD7 resin was used. A multicriteria optimization methodology based on design of experiments showed the optimal conditions were adsorption flow rate of 15 BV/h at pH 2.7, a desorption flow rate at 120 BV/h with ethanol/water 50% (v/v). The best trade-off between purity and recovery yields resulted in the production of a fraction containing 76.05% of chlorogenic acid (CGA) whose biological properties were evaluated. DPPH and ABTS tests showed that this fraction had a higher radical scavenging capacity than vitamin C. In vitro assays have shown that this fraction, when used at a concentration corresponding to 50 or 100 µM of CGA, does not present any cytotoxicity on human THP-1 cells differentiated into macrophages. In addition, this fraction when added prior to the inflammatory stimulus (LPS) can reduce tumor necrosis factor-alpha (TNF-α) production by 22%, thereby highlighting its protective properties against future inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.