Predicting the complexity level of a word or a phrase is considered a challenging task. It is even recognized as a crucial step in numerous NLP applications, such as text rearrangements and text simplification. Early research treated the task as a binary classification task, where the systems anticipated the existence of a word's complexity (complex versus uncomplicated). Other studies had been designed to assess the level of word complexity using regression models or multi-labeling classification models. Deep learning models show a significant improvement over machine learning models with the rise of transfer learning and pre-trained language models. This paper presents our approach that won the first rank in the SemEval-task1 (sub stask1). We have calculated the degree of word complexity from 0-1 within a text. We have been ranked first place in the competition using the pre-trained language models BERT and RoBERTa, with a Pearson correlation score of 0.788.
Android applications have recently witnessed a pronounced progress, making them among the fastest growing technological fields to thrive and advance. However, such level of growth does not evolve without some cost. This particularly involves increased security threats that the underlying applications and their users usually fall prey to. As malware becomes increasingly more capable of penetrating these applications and exploiting them in suspicious actions, the need for active research endeavors to counter these malicious programs becomes imminent. Some of the studies are based on dynamic analysis, and others are based on static analysis, while some are completely dependent on both. In this paper, we studied static, dynamic, and hybrid analyses to identify malicious applications. We leverage machine learning classifiers to detect malware activities as we explain the effectiveness of these classifiers in the classification process. Our results prove the efficiency of permissions and the action repetition feature set and their influential roles in detecting malware in Android applications. Our results show empirically very close accuracy results when using static, dynamic, and hybrid analyses. Thus, we use static analyses due to their lower cost compared to dynamic and hybrid analyses. In other words, we found the best results in terms of accuracy and cost (the trade-off) make us select static analysis over other techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.