In this study, a novel confidence indexing algorithm is proposed to minimize human labor in controlling the reliability of automatically extracted synsets from a non-machine-readable monolingual dictionary. Contemporary Turkish Dictionary of Turkish Language Association is used as the monolingual dictionary data. First, the synonym relations are extracted by traditional text processing methods from dictionary definitions and a graph is prepared in Lemma-Sense network architecture. After each synonym relation is labeled by a proper confidence index, synonym pairs with desired confidence indexes are analyzed to detect synsets with a spanning tree-based method. This approach can label synsets with one of three cumulative confidence levels (CL-1, CL-2, and CL-3). According to the confidence levels, synsets are compared with KeNet which is the only open access Turkish Wordnet. Consequently, while most matches with the synsets of KeNet is determined in CL-1 and CL-2 confidence levels, the synsets determined at CL-3 level reveal errors in the dictionary definitions. This novel approach does not find only the reliability of automatically detected synsets, but it can also point out errors of detected synsets from the dictionary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.