Recently proposed systems aim at achieving privacy using locality-sensitive hashing. We show how these approaches fail by presenting attacks against two such systems: Google's FLoC proposal for privacy-preserving targeted advertising and the MinHash Hierarchy, a system for processing location trajectories in a privacy-preserving way. Our attacks refute the pre-image resistance, anonymity, and privacy guarantees claimed for these systems. In the case of FLoC, we show how to deanonymize users using Sybil attacks and to reconstruct 10% or more of the browsing history for 30% of its users using Generative Adversarial Networks. We achieve this only analyzing the hashes used by FLoC. For MinHash, we precisely identify the location trajectory of a subset of individuals and, on average, we can limit users' trajectory to just 10% of the possible geographic area, again using just the hashes. In addition, we refute their differential privacy claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.