Assembly refers both to the process of combining parts to create a structure and to the product resulting therefrom. The complexity of this process increases with the number of pieces in the assembly. This paper presents the assembly planning system design (APSD) program, a computer program developed based on a matrix-based approach and the discrete artificial bee colony (DABC) algorithm, which determines the optimum assembly sequence among numerous feasible assembly sequences (FAS). Specifically, the assembly sequences of three-dimensional (3D) parts prepared in the computer-aided design (CAD) software AutoCAD are first coded using the matrix-based methodology and the resulting FAS are assessed and the optimum assembly sequence is selected according to the assembly time optimisation criterion using DABC. The results of comparison of the performance of the proposed method with other methods proposed in the literature verify its superiority in finding the sequence with the lowest overall time. Further, examination of the results of application of APSD to assemblies consisting of parts in different numbers and shapes shows that it can select the optimum sequence from among hundreds of FAS.
The pressure distribution (PD) and leakage between the slipper and swash plate in an axial piston pump (APP) have a considerable impact on the pump efficiency, affecting aspects such as the load bearing and wear performance of the slipper. Herein, multigene genetic programming (MGGP) and artificial neural network (ANN) machine learning methods (MLMs) are incorporated into a novel approach towards predictive modelling of the PD and leakage on the slipper, which can function hydrostatically/hydrodynamically. Experimentally measured data are used as input for the MGGP and ANN models. The validity of the MGGP and ANN models is verified using test data excluded from the analyses. In addition, the model results are compared with analytic equations (AEs). Both MLMs are found to exhibit strong agreement with the measured data. In particular, the ANN model exhibits superior prediction performance to the MGGP model and AEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.