Let us consider the Boundary Value Problem (BVP) for the discrete Dirac equations a n+1 yn , a n-1 y(1) 0 = 0, where (a n ), (b n ), (p n ) and (q n ), n ∈ N are complex sequences, γ i , β i ∈ C, i = 0, 1, 2, and λ is an eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that this BVP has a finite number of eigenvalues and spectral singularities with a finite number of multiplicities, if
We investigate the principal functions corresponding to the eigenvalues and the spectral singularities of the boundary value problem (BVP) , and , where and are complex sequences, is an eigenparameter, and , for , 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.