Background Coronavirus disease 2019 (COVID-19) cases in Germany, as in most other places in Europe or worldwide, are still highly prevalent. Vaccination rates currently remain low, putting cancer patients at a continued risk of infection with SARS-CoV-2, while prevalence of SARS-CoV-2 antibodies among cancer patients in Germany remains essentially unknown. Methods Between August 2020 and February 2021, patients admitted to our hospital were prospectively enrolled in our COVID-19 biobank. Collected sera were analyzed for SARS-CoV-2-IgM/IgG using Elecsys Anti-SARS-CoV-2 assay. Results One hundred and ten patients with cancer were included in this study. With 71 (65%) patients, most had active cancer treatment, mainly chemotherapy (56%). The most frequent diagnosis was gastrointestinal cancer (54%) with pancreatic cancer being the most common cancer type (24%). Hematologic malignancies were present in 21 patients (17%). Among the cancer patients first diagnosed during the pandemic, the rate of palliative treatment situations tended to be higher (76% vs. 67%, p=0.17). A history of SARS-CoV-2 infection was documented in 15 (14%) patients, however, SARS-CoV-2 antibodies were detected in 10 (67%) patients only. Of the patients without history of SARS-CoV-2 infection, none displayed SARS-CoV-2 antibodies. Conclusion In the present single center experience, a low serological prevalence of SARS-CoV-2 antibodies among cancer patients even after SARS-CoV-2 infection was found. The results support continued strict preventive measures as well as efforts towards faster vaccination, due to a low immunity level in the population.
The role of educational facilities, including schools and universities, in the SARS-CoV-2 pandemic is heavily debated. Specifically, the risk of infection in student dormitories has not been studied. This cohort study monitored students living in dormitories in Bochum, Germany, throughout the winter term of 2020/2021. Over the course of four months, participants were tested repeatedly for SARS-CoV-2 infections using RT-PCR from gargle samples and serological testing. An online questionnaire identified individual risk factors. A total of 810 (46.5% female) students participated. Of these, 590 (72.8%) students participated in the final visit. The cross-sectional antibody prevalence was n = 23 (2.8%) in November 2020 and n = 29 (4.9%) in February 2021. Of 2513 gargle samples analyzed, 19 (0.8%) tested positive for SARS-CoV-2, corresponding to 14 (2.4%) infections detected within the study period. Gargle samples available of cases with confirmed present infection were always positive. The person-time incidence rate was 112.7 (95% CI: 54.11–207.2) per 100,000 person weeks. The standardized incidence ratio was 0.9 (95% CI 0.51–1.46, p = 0.69). In conclusion, students living in student dormitories do not appear to be major drivers of SARS-CoV-2 infections. RT-PCR from gargle samples is a patient-friendly and scalable surveillance tool for detection of SARS-CoV-2 infections.
Among staphylococci Staphylococcus saprophyticus is the only species that is typically uropathogenic and an important cause of urinary tract infections in young women. The amino acid D-serine occurs in relatively high concentrations in human urine and has a bacteriostatic or toxic effect on many bacteria. In uropathogenic Escherichia coli and S. saprophyticus, the amino acid regulates the expression of virulence factors and can be used as a nutrient. The ability of uropathogens to respond to or to metabolize D-serine has been suggested as a factor that enables colonization of the urinary tract. Until now nothing is known about D-serine transport in S. saprophyticus We generated mutants of putative transporter genes in S. saprophyticus 7108 that show homology to the D-serine transporter cycA of E. coli and tested them in a D-serine depletion assay to analyze the D-serine uptake rate of the cells. The mutant of SPP1070 showed a strong decrease in D-serine uptake. Therefore, SSP1070 was identified as a major D-serine transporter in S. saprophyticus 7108 and was named D-serine transporter A (DstA). D-serine caused a prolonged lag phase of S. saprophyticus in a chemically defined medium. This negative effect was dependent on the presence of DstA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.