Lignin was obtained from black liquor samples from soda-AQ pulping of oil palm empty fruit bunch (EFB) fiber. Oil palm EFB reinforced epoxy composite samples with varying lignin content of 15, 20, 25, and 30% as curing agent were prepared. The chemical structures of lignin were characterized by FT-IR, and CHN analysis. FT-IR and CHN analysis confirmed structural changes of epoxy resin after use of EFB-lignin as curing agent in epoxy resin. Thermal analysis of composites was carried out by thermogravimetric analysis (TGA). The TGA graphs showed that crosslinking of epoxy and lignin as curing agent may induce relatively high-chain rigidity in the polymer and may result in an enhanced thermal stability of the EFB/lignin-epoxy composite systems. The mechanical properties (tensile, flexural, and impact behavior) and physical properties (water absorption) of the composite samples were evaluated. Mechanical properties of epoxy composites cured with 25% lignin were found to be higher than that of the composite prepared from a commercial curing agent. Scanning electron micrographs showing tensile fracture of the composites showed evidence of good fiber–matrix interaction, induced by the curing agent.
The effect on morphological, spectroscopic, and thermal properties of oil palm empty fruit bunch fibers (OPEFB fibers) and oil palm frond fibers (OPF fibers) following treatment and modification with sodium hydroxide and succinic anhydride, respectively, were investigated. The evidence of treatment was observed by weight gain and FT-IR. The effect of the treatment upon the fiber surfaces was examined using scanning electron microscopy (SEM), which indicated that succinic anhydride treatment led to smoother surfaces as compared to the sodium hydroxide. The thermal degradation was carried out by thermal gravimetric analysis, which exhibited a different degree of mass loss due to different treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.