Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested that these 24 mutants affect 24 different genes. We applied unsupervised clustering algorithms to classify the recovered mutants into three classes unbiasedly. Further computational analyses revealed that each of the recovered mutations in these three classes shows a unique effect on node subtype composition and connection property distribution of the intrahepatic biliary network. Besides, we found that most recovered mutations are viable. In those mutant fish, biliary network phenotypes persist into adulthood, which themselves are good animal models to study chronic cholestatic liver diseases. Altogether, this study provides unique genetic and computational toolsets that advance our understanding of the molecular pathways leading to biliary system malformation and cholestatic liver diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.