Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants-neutron stars and black holes-are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood.
Over the past two decades, the inference of the violation of the Chandrasekhar mass limit of white dwarfs (WDs) from indirect observation has been a revolutionary discovery in astronomy. Various researchers have already proposed different theories to explain this interesting phenomenon. However, such massive WDs usually possess very little luminosity, hence they so far cannot be detected directly by any observations. We have already proposed that the continuous gravitational wave may be one of the probes to detect them directly, and in the future various space-based detectors, such as LISA, DECIGO, and BBO, should be able to detect many of those WDs (provided they behave like pulsars). In this paper, we address various timescales related to the emission of gravitational as well as dipole radiations. This exploration sets a timescale for the detectors to observe the massive WDs.
In order to explain unusually high luminosity and spectral nature of ultra-luminous Xray sources (ULXs), some of the underlying black holes are argued to be of intermediate mass, between several tens to million solar masses. Indeed, there is a long standing question of missing mass of intermediate range of black holes. However, as some ULXs are argued to be neutron stars too, often their unusual high luminosity is argued by super-Eddington accretions. Nevertheless, all the models are based on non-magnetized or weakly magnetized accretion. There are, however, evidences that magnetic fields in accretion discs/flows around a stellar mass black hole could be million Gauss. Such a magnetically arrested accretion flow plausibly plays a key role to power many combined disc-jet/outflow systems. Here we show that flow energetics of a 2.5-dimensional advective magnetized accretion disc/outflow system around a stellar mass black hole are sufficient to explain power of ULXs in their hard states. Hence, they are neither expected to have intermediate mass black holes nor super-Eddington accretors. We suggest that at least some ULXs are magnetically powered sub-Eddington accretors around a stellar mass black hole.
We discuss the importance of large scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5−dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc (MAD) model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.
The Fermi blazar observations show a strong correlation between γ-ray luminosities and spectral indices. BL Lac objects are less luminous with harder spectra than flatspectrum radio quasars (FSRQs). Interestingly FSRQs are evident to exhibit a Keplerian disc component along with a powerful jet. We compute the jet intrinsic luminosities by beaming corrections determined by different cooling mechanisms. Observed γ-ray luminosities and spectroscopic measurements of broad emission lines suggest a correlation of the accretion disc luminosity with jet intrinsic luminosity. Also, theoretical and observational inferences for these jetted sources indicate a signature of hot advective accretion flow and a dynamically dominant magnetic field at jet-footprint. Indeed it is difficult to imagine the powerful jet launching from a geometrically thin Keplerian disc. We propose a magnetized, advective disc-outflow symbiosis with explicit cooling to address a unified classification of blazars by controlling both the mass accretion rate and magnetic field strength. The large scale strong magnetic fields influence the accretion dynamics, remove angular momentum from the infalling matter, help in the formation of strong outflows/jets, and lead to synchrotron emissions simultaneously. We suggest that the BL Lacs are more optically thin and magnetically dominated than FSRQs at the jet-footprint to explain their intrinsic γ-ray luminosities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.