The analysis of pathophysiological change to erythrocytes is important for early diagnosis of anaemia. The manual assessment of pathology slides is time-consuming and complicated regarding various types of cell identification. This paper proposes an ensemble rule-based decision-making approach for morphological classification of erythrocytes. Firstly, the digital microscopic blood smear images are pre-processed for removal of spurious regions followed by colour normalisation and thresholding. The erythrocytes are segmented from background image using the watershed algorithm. The shape features are then extracted from the segmented image to detect shape abnormality present in microscopic blood smear images. The decision about the abnormality is taken using proposed multiple rule-based expert systems. The deciding factor is majority ensemble voting for abnormally shaped erythrocytes. Here, shape-based features are considered for nine different types of abnormal erythrocytes including normal erythrocytes. Further, the adaptive boosting algorithm is used to generate multiple decision tree models where each model tree generates an individual rule set. The supervised classification method is followed to generate rules using a C4.5 decision tree. The proposed ensemble approach is precise in detecting eight types of abnormal erythrocytes with an overall accuracy of 97.81% and weighted sensitivity of 97.33%, weighted specificity of 99.7%, and weighted precision of 98%. This approach shows the robustness of proposed strategy for erythrocytes classification into abnormal and normal class. The article also clarifies its latent quality to be incorporated in point of care technology solution targeting a rapid clinical assistance.
Molecular pathology, especially immunohistochemistry, plays an important role in evaluating hormone receptor status along with diagnosis of breast cancer. Time-consumption and inter-/intraobserver variability are major hindrances for evaluating the receptor score. In view of this, the paper proposes an automated Allred Scoring methodology for estrogen receptor (ER). White balancing is used to normalize the colour image taking into consideration colour variation during staining in different labs. Markov random field model with expectation-maximization optimization is employed to segment the ER cells. The proposed segmentation methodology is found to have F-measure 0.95. Artificial neural network is subsequently used to obtain intensity-based score for ER cells, from pixel colour intensity features. Simultaneously, proportion score - percentage of ER positive cells is computed via cell counting. The final ER score is computed by adding intensity and proportion scores - a standard Allred scoring system followed by pathologists. The classification accuracy for classification of cells by classifier in terms of F-measure is 0.9626. The problem of subjective interobserver ability is addressed by quantifying ER score from two expert pathologist and proposed methodology. The intraclass correlation achieved is greater than 0.90. The study has potential advantage of assisting pathologist in decision making over manual procedure and could evolve as a part of automated decision support system with other receptor scoring/analysis procedure.
Web-enabled e-healthcare system or computer assisted disease diagnosis has a potential to improve the quality and service of conventional healthcare delivery approach. The article describes the design and development of a web-based distributed healthcare management system for medical information and quantitative evaluation of microscopic images using machine learning approach for malaria. In the proposed study, all the health-care centres are connected in a distributed computer network. Each peripheral centre manages its' own health-care service independently and communicates with the central server for remote assistance. The proposed methodology for automated evaluation of parasites includes pre-processing of blood smear microscopic images followed by erythrocytes segmentation. To differentiate between different parasites; a total of 138 quantitative features characterising colour, morphology, and texture are extracted from segmented erythrocytes. An integrated pattern classification framework is designed where four feature selection methods viz. Correlation-based Feature Selection (CFS), Chi-square, Information Gain, and RELIEF are employed with three different classifiers i.e. Naive Bayes', C4.5, and Instance-Based Learning (IB1) individually. Optimal features subset with the best classifier is selected for achieving maximum diagnostic precision. It is seen that the proposed method achieved with 99.2% sensitivity and 99.6% specificity by combining CFS and C4.5 in comparison with other methods. Moreover, the web-based tool is entirely designed using open standards like Java for a web application, ImageJ for image processing, and WEKA for data mining considering its feasibility in rural places with minimal health care facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.