The development of human civilization over the last decade has reached a landmark as Industry 4.0 has been widely introduced. Several aspects of industry and manufacturing activities are changing due to the Internet of Things (IoT), location detection technologies, and advanced human–machine interfaces. To enact industrial affairs under those specifications, a sensor is required to transform physical events into numerical information. The use of sensors in marine applications also appears in research and studies, in which the sensor is used for both monitoring the phenomena of a designated subject and data acquisition. Achievements in quantifying complex phenomena in critical maritime designs are fascinating subjects to discuss regarding their development and current states, which may be reliable references for further research on developing sensors and related measurement analysis tools in marine, shipbuilding, and shipping fields. This comprehensive review covers several discussion topics, including the origins and development of sensor technology, applied sensor engineering in logistic and shipping activities, the hydrodynamic characterization of designed hulls, the monitoring of advanced machinery performance, Arctic-based field observations, the detection of vibration-based damage to offshore structures, corrosion control and monitoring, and the measurement of explosions on critical maritime infrastructures.
The implementation of sandwich panel on the marine structure needs better knowledge of mechanical behaviour, primarily static and dynamic response. The static and dynamic response is investigated due to the application of a sandwich panel on the ferry ro-ro ramp door using finite element software ABAQUS. Five modification models using different sandwich thickness and stiffener configuration are compared using nonlinear static analysis to analyse a comparison of structural strength and weight saving. Additionally, the dynamic response is also investigated due to debonding problem. The influence of debonding ratio, geometry, number of debonding, debonding depth, debonding location, and boundary condition is carried out. Debonding is estimated by using free vibration analysis where Lanczos method for eigenvalues extraction is applied. Result of nonlinear static analysis shows that Model C causes an increase in strength to weight ratio compared to the existing model. Furthermore, natural frequencies are being calculated as modal parameters to investigate the debonding problem. The natural frequency of the debonded model decreases due to discontinuity in the damage area. The dynamic response using natural frequency shift can be performed as structural health monitoring technique on the ramp door model.
A lightweight sandwich plate system (SPS) consisted of steel faceplate and polyurethane elastomer composite cores have excellent potential to be applied on the ship structure. Steel faceplate and polyurethane elastomer (PU) cores are frequently applied, but PU has a relatively high material cost. More economical material can be achieved by combining PU with fiberglass as a fiberglass reinforced polyurethane elastomer (FRPU) composite. In this study, the sandwich consisting of steel faceplate and FRPU composite core material is applied in the tanker side hull by investigating the structural performance and weight saving analysis using finite element analysis (FEA). Four sandwich side hull models using different stiffener configurations are compared with the conventional stiffened plate model. The result shows the promising SPS application in terms of structural strength and weight savings. The remarkable stress reduction, deformation, and structural weight reduction due to SPS application are discussed. Therefore, its weight reduction can increase the ship payload so that ship operations will be cost-effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.