We report the results of a worldwide campaign to observe WZ Sagittae during its 2001 superoutburst. After a 23-year slumber at V=15.5, the star rose within 2 days to a peak brightness of 8.2, and showed a main eruption lasting 25 days. The return to quiescence was punctuated by 12 small eruptions, of ~1 mag amplitude and 2 day recurrence time; these "echo outbursts" are of uncertain origin, but somewhat resemble the normal outbursts of dwarf novae. After 52 days, the star began a slow decline to quiescence. Periodic waves in the light curve closely followed the pattern seen in the 1978 superoutburst: a strong orbital signal dominated the first 12 days, followed by a powerful /common superhump/ at 0.05721(5) d, 0.92(8)% longer than P_orb. The latter endured for at least 90 days, although probably mutating into a "late" superhump with a slightly longer mean period [0.05736(5) d]. The superhump appeared to follow familiar rules for such phenomena in dwarf novae, with components given by linear combinations of two basic frequencies: the orbital frequency omega_o and an unseen low frequency Omega, believed to represent the accretion disk's apsidal precession. Long time series reveal an intricate fine structure, with ~20 incommensurate frequencies. Essentially all components occurred at a frequency n(omega_o)-m(Omega), with m=1, ..., n. But during its first week, the common superhump showed primary components at n (omega_o)-Omega, for n=1, 2, 3, 4, 5, 6, 7, 8, 9 (i.e., m=1 consistently); a month later, the dominant power shifted to components with m=n-1. This may arise from a shift in the disk's spiral-arm pattern, likely to be the underlying cause of superhumps. The great majority of frequency components ... . (etc., abstract continues)Comment: PDF, 54 pages, 4 tables, 21 figures, 1 appendix; accepted, in press, to appear July 2002, PASP; more info at http://cba.phys.columbia.edu
We summarize the results of a 20-year campaign to study the light curves of BK Lyncis, a nova-like star strangely located below the 2-3 hour orbital period gap in the family of cataclysmic variables. Two apparent "superhumps" dominate the nightly light curves -with periods 4.6% longer, and 3.0% shorter, than P orb . The first appears to be associated with the star's brighter states (V~14), while the second appears to be present throughout and becomes very dominant in the low state (V~15.7). It's plausible that these arise, respectively, from a prograde apsidal precession and a retrograde nodal precession of the star's accretion disk.Starting in the year 2005, the star's light curve became indistinguishable from that of a dwarf nova -in particular, that of the ER UMa subclass. No such clear transition has ever been observed in a cataclysmic variable. Reviewing all the star's oddities, we speculate: (a) BK Lyn is the remnant of the probable nova on 30 December 101, and (b) it has been fading ever since, but has taken ~2000 years for the accretion rate to drop sufficiently to permit dwarf-nova eruptions. If such behavior is common, it can explain other puzzles of CV evolution. One: why the ER UMa class even exists (because all members can be remnants of recent novae). Two: why ER UMa stars and short-period novalikes are rare (because their lifetimes, which are essentially cooling times, are short). Three: why short-period novae all decline to luminosity states far above their true quiescence (because they're just getting started in their postnova cooling). Four: why the orbital periods, accretion rates, and whitedwarf temperatures of short-period CVs are somewhat too large to arise purely from the effects of gravitational radiation (because the unexpectedly long interval of enhanced postnova brightness boosts the mean mass-transfer rate). And maybe even five: why very old, post-period-bounce CVs are hard to find (because the higher mass-loss rates have "burned them out"). These are substantial rewards in return for one investment of hypothesis: that the second parameter in CV evolution, besides P orb , is time since the last classical-nova eruption.
We report photometry and spectroscopy of the novalike variable DW Cancri. The spectra show the usual broad H and He emission lines, with an excitation and continuum slope characteristic of a moderately high accretion rate. A radial-velocity search yields strong detections at two periods, 86.1015(3) min and 38.58377(6) min. We interpret these as respectively the orbital period P_orb of the binary, and the spin period P_spin of a magnetic white dwarf. The light curve also shows the spin period, plus an additional strong signal at 69.9133(10) min, which coincides with the difference frequency 1/P_spin-1/P_orb. These periods are stable over the 1 year baseline of measurement. This triply-periodic structure mimics the behavior of several well-credentialed members of the "DQ Herculis" (intermediate polar) class of cataclysmic variables. DQ Her membership is also suggested by the mysteriously strong sideband signal (at nu_spin-nu_orb), attesting to a strong pulsed flux at X-ray/EUV/UV wavelengths. DW Cnc is a new member of this class, and would be an excellent target for extended observation at these wavelengths.Comment: PDF, 28 pages, 6 tables, 9 figures; accepted, in press, to appear June 2004, PASP; more info at http://cba.phys.columbia.edu
The secondary photometric standard star #79 for the FS Aur field (Henden & Honeycutt 1997) designated as [HH97] FS Aur-79 (GSC 1874 399) is a short period (0.2508 days) eclipsing binary whose light curve is a combination of the $\beta$ Lyr and BY Dra type variables. High signal-to-noise multi-color photometry were obtained using the USNO 1-m telescope. These light curves show asymmetry at quadrature phases (O'Connell effect), which can be modeled with the presence of star spots. A low resolution spectrum obtained with the 3.5-m WIYN telescope at orbital phase 0.76 is consistent with a spectral type of dK7e and dM3e. A radial velocity curve for the primary star was constructed using twenty-four high resolution spectra from the 9.2 m HET. Spectra show H-alpha and H-beta in emission confirming chromospheric activity and possibly the presence of circumstellar material. Binary star models that simultaneously fit the U, B, V, R and RV curves are those with a primary star of mass 0.59+-0.02 Msun, temperature 4100+-25 K, mean radius of 0.67 Rsun, just filling its Roche lobe and a secondary star of mass 0.31+-0.09 Msun, temperature 3425+-25 K, mean radius of 0.48 Rsun, just within its Roche lobe. An inclination angle of 83+-2 degrees with a center of mass separation of 1.62 Rsun is also derived. Star spots, expected for a rotation period of less than a day, had to be included in the modeling to fit the O'Connell effect
Context. Based on XMM-Newton X-ray observations IGR J19552+0044 appears to be either a pre-polar or an asynchronous polar. Aims. We conducted follow-up optical observations to identify the sources and periods of variability precisely and to classify this X-ray source correctly. Methods. Extensive multicolor photometric and medium-to high-resolution spectroscopy observations were performed and period search codes were applied to sort out the complex variability of the object. Results. We found firm evidence of discording spectroscopic (81.29 ± 0.01 m) and photometric (83.599 ± 0.002 m) periods that we ascribe to the white dwarf (WD) spin period and binary orbital period, respectively. This confirms that IGR J19552+0044 is an asynchronous polar. Wavelength dependent variability and its continuously changing shape point at a cyclotron emission from a magnetic WD with a relatively low magnetic field below 20 MG. Conclusions. The difference between the WD spin period and the binary orbital period proves that IGR J19552+0044 is a polar with the largest known degree of asynchronism (0.97 or 3%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.