Cutaneous melanoma is a highly immunogenic malignancy, surgically curable at early stages, but life-threatening when metastatic. Here we integrate high-plex imaging, 3D high-resolution microscopy, and spatially-resolved micro-region transcriptomics to study immune evasion and immunoediting in primary melanoma. We find that recurrent cellular neighborhoods involving tumor, immune, and stromal cells change significantly along a progression axis involving precursor states, melanoma in situ, and invasive tumor. Hallmarks of immunosuppression are already detectable in precursor regions. When tumors become locally invasive, a consolidated and spatially restricted suppressive environment forms along the tumor-stromal boundary. This environment is established by cytokine gradients that promote expression of MHC-II and IDO1, and by PD1-PDL1 mediated cell contacts involving macrophages, dendritic cells, and T cells. A few millimeters away, cytotoxic T cells synapse with melanoma cells in fields of tumor regression. Thus, invasion and immunoediting can co-exist within a few millimeters of each other in a single specimen.
Immune checkpoint blockade (ICB) has revolutionized the treatment of cancer patients. The main focus of ICB has been on reinvigorating the adaptive immune response, namely, activating cytotoxic T cells. ICB has demonstrated only modest benefit against advanced breast cancer, as breast tumors typically establish an immune suppressive tumor microenvironment (TME). Triple-negative breast cancer (TNBC) is associated with infiltration of tumor infiltrating lymphocytes (TILs) and patients with TNBC have shown clinical responses to ICB. In contrast, hormone receptor positive (HR+) breast cancer is characterized by low TIL infiltration and minimal response to ICB. Here we review how HR+ breast tumors establish a TME devoid of TILs, have low HLA class I expression, and recruit immune cells, other than T cells, which impact response to therapy. In addition, we review emerging technologies that have been employed to characterize components of the TME to reveal that tumor associated macrophages (TAMs) are abundant in HR+ cancer, are highly immune-suppressive, associated with tumor progression, chemotherapy and ICB-resistance, metastasis and poor survival. We reveal novel therapeutic targets and possible combinations with ICB to enhance anti-tumor immune responses, which may have great potential in HR+ breast cancer.
Human epididymis protein 4 (HE4) is a novel tumour marker in epithelial ovarian cancer (EOC). Data on its profile and predictive potential for subsequent outcome after neoadjuvant chemotherapy (NACT) are still under investigation. The aim of this study was to compare CA125 and HE4 profiles with radiologic response after NACT and to evaluate their potential as predictors of clinical outcome in a primarily inoperable EOC patient cohort. Twenty-five EOC patients of high-grade subtype (HGSC) treated with NACT were enrolled in the study. Serum HE4 and CA125 samples were taken at the time of diagnosis and before interval debulking surgery (IDS). Pre-NACT and pre-IDS HE4 and CA125 and their percentage changes were compared with NACT response seen on CT and surgical outcome in IDS. We also evaluated the biomarkers' abilities to predict platinum-free interval (PFI), progression-free survival (PFS) and overall survival (OS). All 25 patients were considered inoperable in laparoscopy at the time of diagnosis. HE4 and CA125 changes during NACT did not correlate with the changes seen on CT. Surgical outcome in IDS was associated with pre-IDS biomarker values but not with those taken before diagnosis. In IDS, 87 % had <1-cm residual tumour. In patients with HE4 change >80 and <80 % during NACT, the median OS was 3.38 and 1.60 years (p = 0.01), respectively. Serum HE4 is a promising additional tool when evaluating advanced HGSC patient's response to NACT. It may be helpful when deciding whether to proceed to IDS or to second-line chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.