Abstract. The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.
Abstract. The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002–2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002–2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation (February–May) and increasing temperature during the growing period because of the global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.
Typical grassland is the core of the Mongolian Plateau grassland belt, and is also an important ecological barrier in the north of China. It is of great significance to explore the real-time changes in grassland climate for the prevention and control of climate disasters, and for ecological protection. In this study, the spatial and temporal variation of temperature, precipitation and maximum wind speed in typical Mongolian Plateau grassland were studied using observation data from 16 meteorological stations from 1978 to 2020, using the linear trend method, cumulative anomaly method, Mann-Kendall test, sliding t-test and Morlet wavelet analysis. The results show that: (1) The typical grassland temperature has been increasing at a rate of 0.4 °C/10a (p < 0.001) over the past 40 years, with the most significant warming in spring and summer; a sudden change from low to high temperature occurred in 1992; the annual average temperature gradually increased from northeast to southwest, with significant warming in the southwest. (2) Annual precipitation decreased slightly at a rate of −2.39 mm/10a, with the most significant decrease in summer precipitation; a sudden change from more to less precipitation occurred in 1998; spatially, precipitation decreased gradually from east to west, with significant moisture reduction in its northern part. (3) The maximum wind speed decreased significantly at a rate of −0.33m/s/10a (p < 0.001), with the most pronounced decrease in spring; the maximum wind speed changed abruptly from strong to weak around 1991; spatially, the annual average maximum wind speed decreased gradually from northwest to southeast and northeast, with the most pronounced decrease in the south and northeast. (4) The wavelet analysis shows that the typical grassland area will still be in a warm, low-rainfall and weak-wind stage in the coming years. Using the above analysis, the typical grassland climate of the Mongolian Plateau has shown a clear trend of warm and dry, weak wind in the past 40 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.