Gliotoxin is an important virulence factor of Aspergillus fumigatus. Although GliA putatively belongs to the major facilitator superfamily in the gliotoxin biosynthesis cluster, its roles remain unclear. To determine the function of GliA, we disrupted gliA in A. fumigatus. gliA disruption increased the susceptibility of A. fumigatus to gliotoxin. The gliT and gliA double-disrupted mutant had even higher susceptibility to gliotoxin than each individual disruptant. The extracellular release of gliotoxin was greatly decreased in the gliA disruptant. Mice infected with the gliA disruptant of A. fumigatus showed higher survival rates than those infected with the parent strain. These results strongly indicate that GliA, in addition to GliT, plays a significant role in the tolerance to gliotoxin and protection from extracellular gliotoxin in A. fumigatus by exporting the toxin. This also allows the fungus to evade the harmful effect of its own gliotoxin production. Moreover, GliA contributes to the virulence of A. fumigatus through gliotoxin secretion.
SUMMARY:Biofilm production by microorganisms is critical for their pathogenicity. Serum promotes biofilm production by Aspergillus fumigatus; however, its effects on other Aspergillus spp. have not been reported. We analyzed biofilm formation by five Aspergillus spp., i.e., A. fumigatus, A. flavus, A. nidulans, A. niger, and A. terreus, and examined the effects of serum/serum proteins such as fetal bovine serum (FBS), fetuin A, and bovine serum albumin (BSA) on hyphal growth, hyphal branching, and extracellular matrix (ECM) formation. The antifungal susceptibility of A. fumigatus isolates that formed biofilms was also examined. All serum/serum proteins promoted the growth of all these fungal species; growth promotion was most evident with FBS, followed by fetuin A and BSA. This effect was most evident in case of A. fumigatus and least evident in case of A. terreus. Electron microscopy showed thick ECM layers surrounding fungal cell walls after culture with FBS, particularly in A.fumigatus. An increase in hyphal branching caused by fetuin A was the highest in case of A. fumigatus and A. nidulans. Biofilm-forming A. fumigatus showed resistance to most antifungal agents, although a synergism of micafungin and amphotericin B was suggested. Our results indicate that serum promotes biofilm formation, including thick ECM, by many Aspergillus spp., particularly A. fumigatus, and that this may be closely related to its virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.