With the development of artificial intelligence, the application of intelligent algorithms to low-power embedded chips has become a new research topic today. Based on this, this study optimizes the YOLOv2 algorithm by tailoring and successfully deploys it on the K210 chip to train the face object detection algorithm model separately. The intelligent fan with YOLOv2 model deployed in K210 chip can detect the target of the character and obtain the position and size of the character in the machine coordinates. Based on the obtained information of character coordinate position and size, the fan's turning Angle and the size of air supply are intelligently perceived. The experimental results show that the intelligent fan design method proposed here is a new embedded chip intelligent method of cutting and improving the YOLOv2 algorithm. It innovatively designed solo tracking, crowd tracking, and intelligent ranging algorithms, which perform well in human perception of solo tracking and crowd tracking and automatic air volume adjustment, improve the accuracy of air delivery and user comfort, and also provide good theoretical and practical support for the combination of AI and embedded in other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.