We speculate that exosomes derived from human umbilical cord mesenchymal stromal cells (HUC-MSCs) will accumulate within tumors and have the potential for both tumor location or drug delivery.
Methods
: To determine proof of concept, HUC-MSC exosomes were labeled with an MRI contrast agent, gadolinium, or a near infrared dye. Exosome accumulation within ectopic osteosarcoma tumor-bearing mice was determined by 14.1 T MRI or bioimaging over 24-48 h after injection.
In vitro
studies examine the accumulation and physiological effect of exosomes on human and mouse osteosarcoma cell lines by MTT assay, confocal microscopy, and flow cytometry.
Results
: Systemic HUC-MSC exosomes accumulated continuously in tumor over a 24-48 h post-injection period. In contrast, synthetic lipid nanoparticles accumulate in tumor only for the first 3 h post-injection.
Conclusion
: These results suggest that HUC-MSCs exosomes accumulate within human or mouse osteosarcoma cells
in vitro
and
in vivo
over a 24 to 48 h after infusion.
In the present study, a biomimetic nanoconstruct (BNc) with a multimodal imaging system is engineered using tumor homing natural killer cell membrane (NKM), near‐infrared (NIR) fluorescent dye, and gadolinium (Gd) conjugate‐based magnetic resonance imaging contrast agent onto the surface of a polymeric nanoparticle. The engineered BNc is 110 ± 20 nm in size and showed successful retention of NKM proteins. The magnetic properties of the BNc are found to be tunable from 2.1 ± 0.17 to 5.3 ± 0.5 mm−1 s−1 under 14.1 T, by adjusting the concentration of Gd‐lipid conjugate onto the surface of the BNc. Confocal imaging and cell sorting analysis reveal a distinguishable cellular interaction of the BNc with MCF‐7 cells in comparison to that of bare polymeric nanoparticles suggesting the tumor homing properties of NKM camouflage system. The in vitro cellular interaction results are further confirmed by in vivo NIR fluorescent tumor imaging and ex vivo MR imaging, respectively. Pharmacokinetics and biodistribution analysis of the BNc show longer circulation half‐life (≈9.5 h) and higher tumor accumulation (10% of injected dose) in MCF‐7 induced tumor‐bearing immunodeficient NU/NU nude mice. Owing to the proven immunosurveillance potential of NK‐cell in the field of immunotherapy, the BNc engineered herein would hold promises in the design consideration of nanomedicine engineering.
Magnetic resonance imaging (MRI) is a routinely used imaging technique in medical diagnostics, which is further enhanced with the use of contrast agents (CAs). The most commonly used CAs are gadolinium‐based contrast agents (GBCAs), in which gadolinium (Gd) is chelated with organic chelating agents (linear or cyclic). However, the use of GBCA is related to toxic side effect due to the release of free Gd3+ ions from the chelating agents. The repeated use of GBCAs has led to Gd deposition in various major organs including bone, brain, and kidneys. As a result, the use of GBCA has been linked to the development of nephrogenic systemic fibrosis (NSF). Due to the GBCA associated toxicities, some clinically approved GBCAs have been limited or revoked recently. Therefore, there is an urgent need for the development of new strategies to chelate and stabilize Gd3+ ions for contrast enhancement, safety profile, and selective imaging of a pathological site. Toward this endeavor, GBCAs have been engineered using different nanoparticulate systems to improve their stability, biocompatibility, and pharmacokinetics. Throughout this review, some of the important strategies for engineering small molecular Gd3+ chelates into a nanoconstruct is discussed. We focus on the development of GBCAs as liposomes, mesoporous silica nanoparticles (MSNs), polymeric nanocarriers, and plasmonic nanoparticles‐based design strategies to improve safety and contrast enhancement for contrast enhanced‐magnetic resonance imaging (Ce‐MRI). We also discuss the in‐vitro/in‐vivo properties of strategically designed nanoscale MRI CAs, its potentials, and limitations.
This article is categorized under:
Diagnostic Tools > in vivo Nanodiagnostics and Imaging
Diagnostic Tools > Diagnostic Nanodevices
Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.