Abstract-The design of a new biologically inspired artificial developmental system is described in this paper. In general, developmental systems converge slower and are more computationally expensive than direct evolution. However, the performance trends of development indicate that the full benefit of development will arise with larger and more complex problems that exhibit some sort of regularity in their structure: thus, the aim is to evolve larger electronic systems through the modularity allowed by development. The hope is that the proposed artificial developmental system will exhibit adaptivity and fault tolerance in the future. The cell signalling and the system of Gene Regulatory Networks present in biological organisms are modelled in our developmental system, and tailored for tackling real world problems on electronic hardware. For the first time, a Gene Regulatory Network system is successfully shown to develop the complete circuit structure of a desired digital circuit without the help of another mechanism or any problem specific structuring. Experiments are presented that show the modular behaviour of the developmental system, as well as its ability to solve non-modular circuit problems.
Abstract. Evolution is particularly good at finding specific solutions, which are only valid for exactly the input and environment that are presented during evolution. In most evolution experiments the input pattern order problem is not considered, even though the ability to provide a correct result for any input pattern is a prerequisite for valid circuits. Therefore, the importance of including randomness in the input pattern applied during evolution is addressed in this paper. This is shown to be mandatory-particularly in the case of unconstrained intrinsic evolution of digital circuits-in order to find valid solutions. The different ways in which unconstrained evolution and constrained evolution exploit resources of a hardware substrate are compared. It is also shown that evolution benefits from versatile input configurations. Furthermore, hierarchical fitness functions, previously introduced to improve the evolution of combinatorial circuits, are applied to the evolution of sequential circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.