This study investigates apoptosis as a mechanism for CD4+ T-cell depletion in human immunodeficiency virus type-1 (HIV-1) infection. Although several recent studies have shown that T cells of HIV-infected individuals show enhanced susceptibility to cell death by apoptosis, the mechanisms responsible for apoptosis are largely unknown. By using a flow cytometric technique and by morphology, we have quantitated the percentage of cells undergoing apoptosis in peripheral blood mononuclear cells (PBMCs) from HIV-seronegative donors and from HIV- infected asymptomatic patients. The PBMCs were cultured without any stimulus or with staphylococcus enterotoxin B, anti-T-cell receptor (TCR) alpha beta monoclonal antibody WT-31, or phytohemagglutinin for periods up to 6 days. In addition, we sought to determine whether cross- linking of CD4 followed by various modes of TCR stimulation in vitro could induce apoptosis in normal PBMCs. Here we show that (1) patient PMBCs undergo marked spontaneous apoptosis; (2) stimulation of T cells of patients as well as normal donors results in increased apoptosis; and (3) cross-linking of CD4 molecules is sufficient to induce apoptosis in CD4+ T cells if cross-linking is performed in unfractioned PBMCs, but not if CD4 molecules are cross-linked in purified T-cell preparations. These observations strongly suggest that accelerated cell death through apoptosis plays an important role in the pathogenesis of HIV-1 infection. At the same time, our observations implicate cross- linking of CD4 in vivo as a major contributor to this mechanism of accelerated cell death in HIV infection.
We have recently shown that, in unfractioned peripheral blood mononuclear cells (PBMCs), the cross-linking of CD4 molecules (CD4XL) is sufficient to induce T-cell apoptosis. However, the underlying mechanism for the CD4XL-mediated T-cell apoptosis is largely unknown. Several recent studies have shown that Fas antigen (Ag), a cell-surface molecule, mediates apoptosis-triggering signals. We show here that cross-linking of CD4 molecules, induced either by anti-CD4 monoclonal antibody (MoAb) Leu3a or by human immunodeficiency virus-1 (HIV-1) envelope protein gp160, upregulates Fas Ag expression as well as Fas mRNA in normal lymphocytes. Addition of the tyrosine protein kinase inhibitor genistein or of the immunosuppressive agent cyclosporin A abrogated these effects. The upregulation of Fas Ag closely correlated with apoptotic cell death, as determined by flow cytometry. In addition, CD4XL resulted in the induction of interferon-gamma (IFN- gamma) and tumor necrosis factor-alpha (TNF-alpha) in the absence of interleukin-2 (IL-2) and IL-4 secretion in PBMCs. Both INF-gamma and TNF-alpha were found to contribute to Fas Ag upregulation and both anti- IFN-gamma and anti-TNF-alpha antibodies blocked CD4XL-induced Fas Ag upregulation and lymphocyte apoptosis. These findings strongly suggest that aberrant cytokine secretion induced by CD4XL and consequent upregulation of Fas Ag expression might play a critical role in triggering peripheral T-cell apoptosis and thereby contribute to HIV disease pathogenesis.
Evidence is accumulating that T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals show accelerated cell death through apoptosis. We have recently demonstrated that the cross-linking of CD4 molecules (CD4XL) results in death of normal peripheral T cells through apoptosis and imbalanced cytokine secretion (ie, induction of tumor necrosis factor-alpha [TNF-alpha] and interferon-gamma [IFN-gamma] in the absence of interleukin-2 [IL-2] or IL-4 secretion). These upregulated cytokines (TNF-alpha/IFN-gamma) largely contributed to upregulation of the apoptosis-inducing cell surface molecule, Fas (APO- 1/CD95) and apoptosis induction. The present study investigated the effect of vesnarinone as a novel immunomodulating agent on CD4XL- induced T-cell apoptosis. The addition of vesnarinone to peripheral blood mononuclear cells (PBMC) significantly inhibited CD4XL-induced lymphocyte apoptosis. This apoptosis-inhibitory effect of vesnarinone was associated with the blocking of CD4XL-induced TNF-alpha IFN-gamma secretion and of Fas antigen upregulation. However, vesnarinone did not block effects of exogenously supplemented TNF-alpha/IFN-gamma on Fas induction. These data suggest that vesnarinone inhibits CD4XL-induced TNF-alpha/IFN-gamma secretion, thereby blocking subsequent Fas upregulation and apoptosis induction. Given the potent pathogenic role of imbalanced cytokine secretion observed in HIV-infection, an agent such as vesnarinone may be of therapeutic value in slowing disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.