The question of delay management is whether trains should wait for a delayed feeder train or should depart on time. In classical delay management models passengers always take their originally planned route. In this paper, we propose a model where re-routing of passengers is incorporated. To describe the problem we represent it as an event-activity network similar to the one used in classical delay management, with some additional events to incorporate origin and destination of the passengers. We present an integer programming formulation of this problem. Furthermore, we discuss the variant in which we assume fixed costs for maintaining connections and we present a polynomial algorithm for the special case of only one origin-destination pair. Finally, computational experiments based on real-world data from Netherlands Railways show that significant improvements can be obtained by taking the re-routing of passengers into account in the model.
Unmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissance mission, it is important to visit the largest number of interesting target locations possible, taking into consideration operational constraints related to fuel usage between target locations, weather conditions and endurance of the UAV. We model this planning problem as the well-known orienteering problem, which is a generalization of the traveling salesman problem. Given the uncertainty in the military operational environment, robust planning solutions are required. As such, our model takes into account uncertainty in the fuel usage between targets (for instance due to weather conditions) as well as uncertainty in the importance of visiting specific target locations. We report results using different uncertainty sets that specify the degree of uncertainty against which any feasible solution will be protected. We also compare the probability that a solution is feasible for the robust solution on one hand and the solution found with average fuel usage and expected value of information on the other. In doing so, we show how the sustainability of a UAV mission can be significantly improved.
The question of delay management (DM) is whether trains should wait for delayed feeder trains or should depart on time. Solutions to this problem strongly depend on the capacity constraints of the tracks making sure that no two trains can use the same piece of track at the same time. While these capacity constraints have been included in integer programming formulations for DM, the capacity constraints of the stations (only offering a limited number of platforms) have been neglected so far. This can lead to highly infeasible solutions. In order to overcome this problem we suggest two new formulations for DM both including the stations' capacities. We present numerical results showing that the assignment-based formulation is clearly superior to the packing formulation. We furthermore propose an iterative algorithm in which we improve the platform assignment with respect to the current delays of the trains at each station in each step. We will show that this subproblem asks for coloring the nodes of a graph with a given number of colors while minimizing the weight of the conflicts. We show that the graph to be colored is an interval graph and that the problem can be solved in polynomial time by presenting a totally unimodular IP formulation.
We propose a new FPTAS for the multi-objective shortest path problem. The algorithm uses elements from both an exact labeling algorithm and an FPTAS proposed by Tsaggouris and Zaroliagis (2009). We analyze the running times of these three algorithms both from a theoretical and a computational point of view. Theoretically, we show that there are instances for which the new FPTAS runs an arbitrary times faster than the other two algorithms. Furthermore, for the bi-objective case, the number of approximate solutions generated by the proposed FPTAS is at most the number of Pareto-optimal solutions multiplied by the number of nodes. By performing a set of computational tests, we show that the new FPTAS performs best in terms of running time in case there are many dominated paths and the number of Pareto-optimal solutions is not too small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.