Glucose-containing peritoneal dialysis solutions may exacerbate metabolic abnormalities and increase cardiovascular risk in diabetic patients. Here, we examined whether a low-glucose regimen improves metabolic control in diabetic patients undergoing peritoneal dialysis. Eligible patients were randomly assigned in a 1:1 manner to the control group (dextrose solutions only) or to the low-glucose intervention group (IMPENDIA trial: combination of dextrose-based solution, icodextrin and amino acids; EDEN trial: a different dextrose-based solution, icodextrin and amino acids) and followed for 6 months. Combining both studies, 251 patients were allocated to control (n=127) or intervention (n=124) across 11 countries. The primary endpoint was change in glycated hemoglobin from baseline. Mean glycated hemoglobin at baseline was similar in both groups. In the intention-to-treat population, the mean glycated hemoglobin profile improved in the intervention group but remained unchanged in the control group (0.5% difference between groups; 95% confidence interval, 0.1% to 0.8%; P=0.006). Serum triglyceride, very-low-density lipoprotein, and apolipoprotein B levels also improved in the intervention group. Deaths and serious adverse events, including several related to extracellular fluid volume expansion, increased in the intervention group, however. These data suggest that a low-glucose dialysis regimen improves metabolic indices in diabetic patients receiving peritoneal dialysis but may be associated with an increased risk of extracellular fluid volume expansion. Thus, use of glucose-sparing regimens in peritoneal dialysis patients should be accompanied by close monitoring of fluid volume status.
Glucose has been used successfully for more than two decades in peritoneal dialysis, and in this regard, must be considered a safe and effective osmotic agent. Recently, however, insight has been growing about the potential for metabolic and peritoneal effects arising from long-term exposure to high glucose concentrations—for example, hyperlipidemia and loss of peritoneal ultrafiltration. Clinical concerns over exposure to excessive glucose and glucose degradation products (GDPs) during peritoneal dialysis can be significantly ameliorated by the use of non-glucose-based peritoneal dialysis (PD) solutions, in combination with more biocompatible glucose-based formulations. Peritoneal exposure to GDPs can be reduced by using low-GDP-containing glucose formulations and non glucose solutions such as amino acids and icodextrin. Peritoneal glucose exposure, hyperosmolar stress, and carbohydrate absorption can be reduced by using a combination of icodextrin and amino acids.
Low sodium peritoneal dialysate has been reported to enhance sodium loss and alleviate signs of fluid overload in continuous ambulatory peritoneal dialysis patients. To elucidate the mechanisms involved, we compared ultrafiltration and solute kinetics using low sodium dialysate (LNaD; 105 mEq/liter sodium, 2.5% glucose, 348 mOsm/liter), conventional dialysate with equal osmolality (CD1.5; 132 mEq/liter sodium, 1.5% glucose, 348 mOsm/liter) and conventional dialysate with equal glucose concentration (CD2.5; 132 mEq/liter sodium, 2.5% glucose, 403 mOsm/liter). A 2 liter, six hour exchange of each dialysate was performed on separate days in 10 chronic peritoneal dialysis patients. Transperitoneal solute diffusion was assessed by calculating the permeability-area product (PA) of the peritoneal membrane from the dependence of plasma and dialysate solute concentrations on tie. Net fluid removed using LNaD of 190 +/- 90 (SEM) ml was similar to that using CD2.5 (250 +/- 90 ml) but higher (P < 0.01) than that using CD1.5 (-200 +/- 60 ml). Sodium loss was higher using LNaD (72 +/- 11 mEq, P < 0.01) and CD2.5 (41 +/- 12 mEq, P < 0.05) than using CD1.5 (-18 +/- 8 mEq). Changes in plasma sodium concentration were small during each dwell and were not different among the study dialysates. PA values for urea (23.4 +/- 1.6 ml/min), creatinine (10.0 +/- 1.0 ml/min), and glucose (10.3 +/- 1.3 ml/min) were similar when determined in each dialysate. The PA value for sodium (7.6 +/- 1.5 ml/min) could only be accurately determined in LNaD. We conclude that: (1) net fluid removed is greater using LNaD than CD1.5 despite similar osmolalities because LNaD has a higher glucose concentration and glucose is a more effective osmotic solute than sodium; (2) sodium loss when using LNaD is enhanced by both diffusion and convection; and (3) sodium diffuses across the peritoneum slower than urea, creatinine and glucose. These data suggest that LNaD alleviates signs of fluid overload by increasing net fluid removal and enhancing sodium loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.