Abstract. Using Taubes' periodic ends theorem, Auckly gave examples of toroidal and hyperbolic irreducible integer homology spheres which are not surgery on a knot in the three-sphere. We give an obstruction to a homology sphere being surgery on a knot coming from Heegaard Floer homology. This is used to construct infinitely many small Seifert fibered examples.
Abstract. We show that every irreducible toroidal integer homology sphere graph manifold has a left-orderable fundamental group. This is established by way of a specialization of a result due to Bludov and Glass [2] for the almagamated products that arise, and in this setting work of Boyer, Rolfsen and Wiest [4] may be applied. Our result then depends on input from 3-manifold topology and Heegaard Floer homology.
Abstract. A rational homology sphere whose Heegaard Floer homology is the same as that of a lens space is called an L-space. We classify pretzel knots with any number of tangles which admit L-space surgeries. This rests on Gabai's classification of fibered pretzel links.
Let C Z denote the group of knots in homology spheres that bound homology balls, modulo smooth concordance in homology cobordisms. Answering a question of Matsumoto, the second author previously showed that the natural map from the smooth knot concordance group C to C Z is not surjective. Using tools from Heegaard Floer homology, we show that the cokernel of this map, which can be understood as the non-locally-flat piecewise-linear concordance group, is infinitely generated and contains elements of infinite order.
We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen's connected Seiberg-Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction termsd and d for certain families of three-manifolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.