Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical spectroscopy offering advantages ranging from "vibrational fingerprints" to multiplexed detection. However, the use of this technique in real-world applications has been limited due to difficulties in detecting inherently weak Raman signals often embedded in strong interfering background signals. A variety of plasmonics-active platforms have been developed to increase Raman signals but are not sufficient to extract weak SERS signals from intense interfering background signals. Herein, we describe a practical method, referred to as polarization modulation-SERS (PM-SERS), which utilizes the polarization dependence of anisotropic SERS-active nanostructures to modulate the plasmonic effect to extract SERS signals and remove background. The modulation is obtained by switching the polarization of the excitation source at a specific frequency involving addition of only few optical components such as liquid crystal polarizers to a typical Raman setup. In this work, we characterized the polarization-dependent response of the SERS substrates fabricated using the oblique angle evaporation (OAV) technique and their response under laser excitation using a polarization modulated source. We demonstrated that the PM-SERS method can extract the analyte weak SERS signals from the strong interfering background signal in different situations, involving a fluorescent sample and a strong background light, and we show the possibility of using PM-SERS at a quasi-real time rate (0.5 Hz). We believe that the PM-SERS method will help expand the translation of applications that utilize SERS-substrates to realworld settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.