Intertwining exotic quantum order and nontrivial topology is at the frontier of condensed matter physics [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18] . A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for topological states in the context of the quantum anomalous Hall effect 5,6 and for the hidden matter in the pseudogap phase of cuprate superconductors 7,8 . However, the experimental realization of such topological charge order is challenging. Here we use high-resolution scanning tunnelling microscopy (STM) to discover a topological charge order in a kagome superconductor 21-25 KV3Sb5. Through both lattice-sensitive topography and electronic-sensitive spectroscopic imaging, we observe a 2×2 superlattice, consistent with the star of David deformation in the underlying kagome lattice. Spectroscopically, an energy gap opens at the Fermi level, across which the charge modulation exhibits an intensity reversal, signaling a charge ordering. The strength of charge modulations further displays a clockwise or anticlockwise chiral anisotropy, which we demonstrate can be switched by an applied magnetic field. Our observations and theoretical analysis point to a topological charge order in the frustrated kagome lattice, which not only leads to a giant anomalous Hall effect, but can also be a strong precursor of unconventional superconductivity.
Topological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room temperature magnet Co 2 MnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic phase. On the surface of the magnet, we observe electronic wave functions that take the form of drumheads, enabling us to directly visualize the crucial components of the bulk-boundary topological correspondence. By considering the Berry curvature field associated with the observed topological Weyl fermion lines, we quantitatively account for the giant anomalous Hall response observed in our samples. Our experimental results suggest a rich interplay of strongly correlated electrons and topology in this quantum magnet.The discovery of topological phases of matter has led to a new paradigm in physics, 30 which not only explores the analogs of particles relevant for high energy physics, but also 31 offers new perspectives and pathways for the application of quantum materials [1][2][3][4][5][6][7][8][9][10]. To 32 date, most topological phases have been discovered in non-magnetic materials [6][7][8], which 33 severely limits their magnetic field tunability and electronic/magnetic functionality. Iden-34 tifying and understanding electronic topology in magnetic materials will not only provide 35 indispensable information to make their existing magnetic properties more robust, but also 36 has the potential to lead to the discovery of novel magnetic response that can be used to ex-37 plore future spintronics technology. Recently, several magnets were found to exhibit a large 38 anomalous Hall response in transport, which has been linked to a large Berry curvature in 39 their electronic structures [11][12][13][14][15]. However, it is largely unclear in experiment whether the 40 Berry curvature originates from a topological band structure, such as Dirac/Weyl point or 41 line nodes, due to the lack of spectroscopic investigation. In particular, there is no direct vi-42 sualization of a topological magnetic phase demonstrating a bulk-boundary correspondence 43 with associated anomalous transport. 44Here we use angle-resolved photoemission spectroscopy (ARPES), ab initio calculation 45 and transport to explore the electronic topological phase of the ferromagnet Co 2 MnGa [10]. 46In our ARPES spectra we discover a line node in the bulk of the sample. Taken together with 47 our ab initio calculations, we conclude that we observe Weyl lines protected by crystalline 48 mirror symmetry and requiring magnetic order. In ARPES we further observe drumhead 49 surface states connecting the bulk Weyl lines, revealing a bulk-boundary correspondence in a 50 magnet. Combining our ARPES and ab initio calculation results with transport, we further 51 find that Berry curvature concentrated by the Weyl lines accounts for the giant intrinsic 52 anomal...
It has long been speculated that electronic flatband systems can be a fertile ground for hosting novel emergent phenomena including unconventional magnetism and superconductivity 1-14 . Here we use scanning tunnelling microscopy to elucidate the atomically resolved electronic states and their magnetic response in the kagome magnet 15-20 Co3Sn2S2. We observe a pronounced peak at the Fermi level, which is identified to arise from the kinetically frustrated kagome flatband. Increasing magnetic field up to ±8T, this state exhibits an anomalous magnetization-polarized Zeeman shift, dominated by an orbital moment in opposite to the field direction. Such negative magnetism can be understood as spin-orbit coupling induced quantum phase effects 21-25 tied to non-trivial flatband systems. We image the flatband peak, resolve the associated negative magnetism, and provide its connection to the Berry curvature field, showing that Co3Sn2S2 is a rare example of kagome magnet where the low energy physics can be dominated by the spinorbit coupled flatband. Our methodology of probing band-resolved ordering phenomena such as spin-orbit magnetism can also be applied in future experiments to elucidate other exotic phenomena including flatband superconductivity and anomalous quantum transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.