Topological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room temperature magnet Co 2 MnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic phase. On the surface of the magnet, we observe electronic wave functions that take the form of drumheads, enabling us to directly visualize the crucial components of the bulk-boundary topological correspondence. By considering the Berry curvature field associated with the observed topological Weyl fermion lines, we quantitatively account for the giant anomalous Hall response observed in our samples. Our experimental results suggest a rich interplay of strongly correlated electrons and topology in this quantum magnet.The discovery of topological phases of matter has led to a new paradigm in physics, 30 which not only explores the analogs of particles relevant for high energy physics, but also 31 offers new perspectives and pathways for the application of quantum materials [1][2][3][4][5][6][7][8][9][10]. To 32 date, most topological phases have been discovered in non-magnetic materials [6][7][8], which 33 severely limits their magnetic field tunability and electronic/magnetic functionality. Iden-34 tifying and understanding electronic topology in magnetic materials will not only provide 35 indispensable information to make their existing magnetic properties more robust, but also 36 has the potential to lead to the discovery of novel magnetic response that can be used to ex-37 plore future spintronics technology. Recently, several magnets were found to exhibit a large 38 anomalous Hall response in transport, which has been linked to a large Berry curvature in 39 their electronic structures [11][12][13][14][15]. However, it is largely unclear in experiment whether the 40 Berry curvature originates from a topological band structure, such as Dirac/Weyl point or 41 line nodes, due to the lack of spectroscopic investigation. In particular, there is no direct vi-42 sualization of a topological magnetic phase demonstrating a bulk-boundary correspondence 43 with associated anomalous transport. 44Here we use angle-resolved photoemission spectroscopy (ARPES), ab initio calculation 45 and transport to explore the electronic topological phase of the ferromagnet Co 2 MnGa [10]. 46In our ARPES spectra we discover a line node in the bulk of the sample. Taken together with 47 our ab initio calculations, we conclude that we observe Weyl lines protected by crystalline 48 mirror symmetry and requiring magnetic order. In ARPES we further observe drumhead 49 surface states connecting the bulk Weyl lines, revealing a bulk-boundary correspondence in a 50 magnet. Combining our ARPES and ab initio calculation results with transport, we further 51 find that Berry curvature concentrated by the Weyl lines accounts for the giant intrinsic 52 anomal...
The peculiar band structure of semimetals exhibiting Dirac and Weyl crossings can lead to spectacular electronic properties such as large mobilities accompanied by extremely high magnetoresistance. In particular, two closely neighboring Weyl points of the same chirality are protected from annihilation by structural distortions or defects, thereby significantly reducing the scattering probability between them. Here we present the electronic properties of the transition metal diphosphides, WP2 and MoP2, which are type-II Weyl semimetals with robust Weyl points by transport, angle resolved photoemission spectroscopy and first principles calculations. Our single crystals of WP2 display an extremely low residual low-temperature resistivity of 3 nΩ cm accompanied by an enormous and highly anisotropic magnetoresistance above 200 million % at 63 T and 2.5 K. We observe a large suppression of charge carrier backscattering in WP2 from transport measurements. These properties are likely a consequence of the novel Weyl fermions expressed in this compound.
Applying a temperature gradient in a magnetic material generates a voltage that is perpendicular to both the heat flow and the magnetization. 1,2 This is the anomalous Nernst effect (ANE), 3,4 which was thought to be proportional to the value of the magnetization for a long time. However, more generally, the ANE has been predicted to originate from a net Berry curvature of all bands near the Fermi level (EF. 5,6 Subsequently, a large anomalous Nernst thermopower ( ) has recently been observed in topological materials with no net magnetization but large net Berry curvature [n(k)] around EF. 7-9 These experiments clearly fall outside the scope of the conventional magnetization-model of the ANE, but a significant question remains: Can the value of the ANE in topological ferromagnets exceed the highest values observed in conventional ferromagnets? Here, we report a remarkably high -value of ~6.0 µV K −1 at 1 T in the ferromagnetic topological Heusler compound Co2MnGa at room temperature, which is around 7-times larger than any anomalous Nernst thermopower value ever reported for a conventional ferromagnet. Combined electrical, thermoelectric and first-principles calculations reveal that this high value of the ANE arises from a large net Berry curvature near the Fermi level associated with nodal lines and Weyl points.
Heusler materials, initially discovered by Fritz Heusler more than a century ago, have grown into a family of more than 1000 compounds, synthesized from combinations of more than 40 elements. These materials show a wide range of properties, but new properties are constantly being found. Most recently, by incorporating heavy elements that can give rise to strong spin-orbit coupling (SOC), non-trivial topological phases of matter, such as topological insulators (TIs), have been discovered in Heusler materials. Moreover, the interplay of symmetry, SOC and magnetic structure allows for the realization of a wide variety of topological phases through Berry curvature design. Weyl points and nodal lines can be manipulated by various external perturbations, which results in exotic properties such as the chiral anomaly, and large anomalous spin and topological Hall effects. The combination of a non-collinear magnetic structure and Berry curvature gives rise a non-zero anomalous Hall effect, which was first observed in the antiferromagnets Mn3Sn and Mn3Ge. Besides this k-space Berry curvature, Heusler compounds with non-collinear magnetic structures also possess real-space topological states in the form of magnetic antiskyrmions, which have not yet been observed in other materials. The possibility of directly manipulating the Berry curvature shows the importance of understanding both the electronic and magnetic structures of Heusler compounds. Together, with the new topological viewpoint and the high tunability, novel physical properties and phenomena await discovery in Heusler compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.