Although schizophrenia is an illness that has been historically characterized by the presence of positive symptomatology, decades of research highlight the importance of cognitive deficits in this disorder. This review proposes that the theoretical model of cognitive control, which is based on contemporary cognitive neuroscience, provides a unifying theory for the cognitive and neural abnormalities underlying higher cognitive dysfunction in schizophrenia. To support this model, we outline converging evidence from multiple modalities (eg, structural and functional neuroimaging, pharmacological data, and animal models) and samples (eg, clinical high risk, genetic high risk, first episode, and chronic subjects) to emphasize how dysfunction in cognitive control mechanisms supported by the prefrontal cortex contribute to the pathophysiology of higher cognitive deficits in schizophrenia. Our model provides a theoretical link between cellular abnormalities (eg, reductions in dentritic spines, interneuronal dysfunction), functional disturbances in local circuit function (eg, gamma abnormalities), altered inter-regional cortical connectivity, a range of higher cognitive deficits, and symptom presentation (eg, disorganization) in the disorder. Finally, we discuss recent advances in the neuropharmacology of cognition and how they can inform a targeted approach to the development of effective therapies for this disabling aspect of schizophrenia.
Cognitive control deficits have been consistently documented in patients with schizophrenia. Recent work in cognitive neuroscience has hypothesized a distinction between two theoretically separable modes of cognitive control—reactive and proactive. However, it remains unclear the extent to which these processes are uniquely associated with dysfunctional neural recruitment in individuals with schizophrenia. This functional magnetic resonance imaging (fMRI) study utilized the color word Stroop task and AX Continuous Performance Task (AX-CPT) to tap reactive and proactive control processes, respectively, in a sample of 54 healthy controls and 43 patients with first episode schizophrenia. Healthy controls demonstrated robust dorsolateral prefrontal, anterior cingulate, and parietal cortex activity on both tasks. In contrast, patients with schizophrenia did not show any significant activation during proactive control, while showing activation similar to control subjects during reactive control. Critically, an interaction analysis showed that the degree to which prefrontal activity was reduced in patients versus controls depended on the type of control process engaged. Controls showed increased dorsolateral prefrontal cortex (DLPFC) and parietal activity in the proactive compared to the reactive control task, whereas patients with schizophrenia did not demonstrate this increase. Additionally, patients' DLPFC activity and performance during proactive control was associated with disorganization symptoms, while no reactive control measures showed this association. Proactive control processes and concomitant dysfunctional recruitment of DLPFC represent robust features of schizophrenia that are also directly associated with symptoms of disorganization.
BackgroundOver the past 30 years, evidence has been accumulating for an immunological component to schizophrenia etiology, including genetic links to the major histocompatibility complex, microglia activation, and dysregulated cytokine profiles. However, the degree of similarity in cytokine profiles for schizophrenia and bipolar disorder, as well as the relationship between cytokine levels and brain structure, is less well understood.MethodsTo address this, we recruited 69 first-episode schizophrenia-spectrum patients, 16 first-episode bipolar patients with psychotic features, and 53 healthy controls, from the UC Davis EDAPT clinic. Blood plasma was collected and analyzed for all participants with a subset of participants that also underwent structural MRI on a 1.5T GE scanner.ResultsPlasma levels of interleukin (IL)-1β, IL-2, IL-6, and interferon (IFN)-γ were elevated in schizophrenia patients compared to those in controls. Patients with bipolar disorder had elevated plasma IL-10 levels compared to controls, and the two patient groups did not differ significantly on any immunological measure. Percent whole-brain gray matter was inversely correlated with IFN-γ and IL-12 levels in patients with schizophrenia, with a trend relationship between IFN-γ and IL-12 and prefrontal cortical thickness. Furthermore, psychotic symptoms were positively related to IL-1β levels in individuals with schizophrenia.ConclusionsThese data suggest a partially overlapping pattern of elevated blood cytokine levels in patients with first-episode schizophrenia and bipolar disorder with psychotic features. Furthermore, our findings suggest that elevated pro-inflammatory cytokines may be particularly involved in schizophrenia etiology, given evidence of cytokine-related decreases in total gray matter.Electronic supplementary materialThe online version of this article (10.1186/s12974-018-1197-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.